Kỹ thuật

Khi Áp suất Kéo vào và Kỹ thuật Ứng phó sự sụp đổ do áp suất Bên ngoài

7

Khi Áp suất Kéo vào và Kỹ thuật Ứng phó sự sụp đổ do áp suất Bên ngoài

Công thức cho áp suất uốn tới hạn của vỏ hình trụ:

Pcr≈2×E/((L/D)^2)×(t/D)

Với

  • Pcr = áp suất uốn tới hạn,

  • E = mô đun đàn hồi của vật liệu vỏ,

  • L = chiều dài vỏ không được hỗ trợ,

  • D = đường kính ngoài,

  • t = độ dày của thành,

là một biểu thức đơn giản được sử dụng để ước tính áp suất bên ngoài tới hạn mà tại đó một lớp vỏ hình trụ dài sẽ bị uốn khi nén.

Giải thích và bối cảnh

  • Công thức này liên quan đến áp suất tới hạn với độ cứng của vật liệu E, tỷ lệ mảnh hình học L/D và độ dày tương đối t/D. Nó cho thấy rằng áp suất tới hạn giảm theo bình phương của tỷ lệ mảnh (L/D)^2, có nghĩa là vỏ dài hơn dễ bị vênh hơn và tăng theo độ dày tương đối t/D và mô đun E đại diện cho độ cứng của vỏ.

  • Hình thức đơn giản hóa này phù hợp với hành vi vênh của vỏ hình trụ dài được coi là cột có tiết diện tròn, trong đó lý thuyết vênh Euler được áp dụng. Đối với vỏ dài, Áp suất uốn hoạt động giống như uốn cột và áp suất tới hạn phụ thuộc vào chiều dài, đường kính, độ dày và độ đàn hồi của vật liệu.

  • Công thức là một xấp xỉ hữu ích cho thiết kế sơ bộ và ước tính nhanh chóng. Các mô hình chi tiết hơn bao gồm ảnh hưởng của tỷ lệ Poisson, điều kiện ranh giới và các khuyết điểm của vỏ, điều này sửa đổi tính toán áp suất tới hạn.

  • Công thức áp suất uốn cổ điển của Euler cho các cột là:

        Pcr=π^2EI/((KL)^2)

Với I là mômen quán tính của mặt cắt ngang và K là hệ số chiều dài hiệu quả tùy thuộc vào điều kiện cuối cùng. Công thức uốn vỏ đưa ra có thể được coi là một sự thích nghi cho vỏ hình trụ mỏng dưới áp lực bên ngoài, kết hợp hình dạng vỏ về mặt L/D và t/D.

Tóm tắt

  • Công thức của bạn là một biểu thức thực nghiệm hoặc bán thực nghiệm đơn giản để ước tính áp lực vênh tới hạn của vỏ hình trụ dài dưới áp lực bên ngoài, nhấn mạnh ảnh hưởng của độ mảnh và độ dày của vỏ so với đường kính.

  • Nó có nguồn gốc từ hoặc phù hợp với lý thuyết vênh Euler thích ứng với vỏ hình trụ.

  • Nó đóng vai trò như một công cụ thiết thực trong thiết kế bình chịu áp lực và đường ống để ngăn chặn sự sụp đổ áp suất bên ngoài.

Nếu bạn cần phân tích chi tiết hơn hoặc hướng dẫn thiết kế, các tiêu chuẩn và quy tắc (như ASME UG-28) cung cấp các công thức toàn diện hơn bao gồm các yếu tố an toàn và cân nhắc về sự không hoàn hảo của vỏ.

 

⁉️⁉️Khi Áp suất Kéo vào:⁉️⁉️ Kỹ thuật Ứng phó Sụp đổ Áp suất Bên ngoài
Một trong những trường hợp hư hỏng bị đánh giá thấp nhưng lại có tính tàn phá cao nhất trong thiết kế bình chịu áp lực là sụp đổ áp suất bên ngoài. Không giống như các trường hợp áp suất bên trong khi bình phồng ra ngoài, áp suất bên ngoài—chẳng hạn như chân không hoặc áp suất môi trường xung quanh trên bình đã được hút chân không—có thể dẫn đến cong vênh đột ngột và biến dạng nghiêm trọng.

Ảnh dưới đây minh họa một trường hợp hư hỏng điển hình của một bình hình trụ đứng chịu điều kiện áp suất bên ngoài không được thiết kế đầy đủ. Điều gì đã xảy ra sai sót và làm thế nào để ngăn ngừa?

Nguyên nhân gốc rễ gây sụp đổ dưới áp lực bên ngoài

1. Độ nhạy uốn cong của xi lanh thành mỏng
Vỏ xi lanh rất dễ bị uốn cong hướng tâm dưới tác động của lực nén. Vỏ càng dài và mỏng thì càng dễ bị sụp đổ dưới áp lực chênh lệch.

2. Thiếu vòng gia cường
Nếu không có vòng gia cường bên ngoài, các đoạn dài không được đỡ sẽ mất khả năng chống sụp đổ. Hiện tượng uốn cong thường bắt đầu ở giữa nhịp giữa các gối đỡ.

3. Sử dụng không đúng tính toán ASME UG-28
Mục VIII, Phân đoạn 1, UG-28 của Bộ luật ASME quy định các quy tắc thiết kế chịu áp lực bên ngoài. Việc bỏ qua hoặc áp dụng sai các công thức của mục này có thể dẫn đến thiết kế không an toàn.

4. Sự cố chân không bất ngờ
Điều kiện chân không trong quá trình xả nước, vệ sinh hoặc thoát hơi nước nhanh có thể vượt quá khả năng chống sụp đổ của bình nếu không được tính toán đúng trong thiết kế.

Tiêu chuẩn UG-28 giúp ngăn ngừa hư hỏng như thế nào

Các nhà thiết kế phải xác định áp suất bên ngoài quan trọng bằng cách sử dụng các thông số vật liệu và hình học. Một biểu thức đơn giản để ước tính:

Pcr ≈ (2 × E) / (L/D)^2 × (t/D)

Trong đó:

Pcr = áp suất uốn tới hạn

E = mô đun đàn hồi của vật liệu vỏ

L = chiều dài vỏ không được hỗ trợ

D = đường kính ngoài

t = độ dày thành

Trong thiết kế thực tế, ASME sử dụng biểu đồ thiết kế, hệ số A và B, đồng thời xem xét các đặc tính vật liệu và hiệu chỉnh nhiệt độ. Phân tích phần tử hữu hạn (FEA) thường được sử dụng để xác nhận trong các hình học ranh giới hoặc phức tạp.

Bài học cho Kỹ sư Cơ khí

– Luôn thiết kế trong điều kiện chân không, ngay cả khi không mong đợi vận hành trong điều kiện chân không.

– Áp dụng vòng gia cường khi cần thiết dựa trên hướng dẫn của UG-29.

– Kiểm tra định kỳ các hiện tượng ăn mòn có thể làm giảm độ bền thành vỏ.

– Sử dụng FEA để xác nhận tính toàn vẹn của vỏ, đặc biệt là trong các hình học tùy chỉnh hoặc các ứng dụng có rủi ro cao.

– Hỏng hóc do áp suất bên ngoài không diễn ra dần dần—chúng xảy ra ngay lập tức và không thể phục hồi. Đó là lý do tại sao việc phòng ngừa cong vênh phải được ưu tiên hàng đầu, chứ không phải là một suy nghĩ sau này.

#PressureVessels #ASME #UG28 #MechanicalEngineering #ExternalPressure #StructuralFailure #Buckling #FEA #StiffenerDesign #EngineeringIntegrity #VacuumCollapse #InspectionMatters #WeldingDesign #DesignVerification

Bình chịu áp lực, ASME, UG-28, Kỹ thuật cơ khí, Áp suất bên ngoài, Hỏng hóc kết cấu, Uốn cong, FEA, Thiết kế bộ phận làm cứng, Tính toàn vẹn kỹ thuật, Sụp đổ chân không, Vấn đề kiểm tra, Thiết kế hàn, Xác minh thiết kế
(St.)

0 ( 0 bình chọn )

NGUYỄN QUANG HƯNG BLOG

https://nguyenquanghung.net
Kỹ sư cơ khí, bảo dưỡng, sửa chữa, tư vấn, thiết kế, chế tạo, cung cấp, lắp đặt thiết bị, hệ thống.

Ý kiến bạn đọc (0)

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *