Kỹ thuật

Khi nào cần Kiểm tra Va đập theo ASME B31.3

3

Thử nghiệm va đập được yêu cầu theo ASME B31.3 khi đáp ứng một số điều kiện nhất định liên quan đến loại vật liệu, nhiệt độ kim loại thiết kế tối thiểu (MDMT) và độ dày thành ống. Đặc biệt:

  • Thử nghiệm va đập là bắt buộc nếu sự kết hợp giữa độ dày vật liệu và MDMT giảm xuống dưới một đường cong quy định trong ASME B31.3. Điều này có nghĩa là nếu nhiệt độ thiết kế tối thiểu của vật liệu dưới -18 ° C (0 ° F) và độ dày sao cho đường cong không được đáp ứng, thì cần phải kiểm tra va đập của kim loại mối hàn.

  • Đối với thử nghiệm va đập kim loại mối hàn, phiếu kiểm tra chất lượng phải được thử nghiệm ở nhiệt độ bằng hoặc thấp hơn MDMT nếu nó nhỏ hơn -18 °C, ngoại trừ khi vật tư hàn đã được phân loại để đáp ứng các yêu cầu va đập ở nhiệt độ đó.

  • Thử nghiệm va đập bao gồm vật liệu cơ bản, trình độ quy trình hàn và mối hàn sản xuất khi có thể.

  • Miễn trừ tồn tại khi tỷ lệ ứng suất thiết kế so với ứng suất cho phép thấp (dưới khoảng 0,35) hoặc khi vật tư hàn đủ tiêu chuẩn đã đáp ứng các yêu cầu về độ bền va đập.

  • Đối với nhiệt độ cực thấp (như dưới -320 ° F / -196 ° C), các thử nghiệm va đập phải được thực hiện trên tất cả các nguyên liệu thô và trình độ quy trình hàn bất kể MDMT.

  • Mã cung cấp các đường cong và bảng cụ thể để xác định xem có cần thử nghiệm va đập hay không dựa trên nhóm vật liệu, độ dày và MDMT.

Tóm lại, thử nghiệm va đập theo ASME B31.3 thường được yêu cầu đối với vật liệu đường ống xử lý và mối hàn khi hoạt động ở hoặc dưới nhiệt độ thấp nhất định với độ dày quy định để đảm bảo độ dẻo dai và ngăn ngừa đứt gãy giòn, nhưng các trường hợp miễn trừ và relaxations tồn tại tùy thuộc vào tỷ lệ ứng suất, cấp vật liệu và vật tư tiêu hao được sử dụng.

 

 

Mahmoud Khaled

🎯 Hiểu rõ khi nào cần Kiểm tra Va đập theo ASME B31.3

Kiểm tra va đập được yêu cầu khi nhiệt độ kim loại thiết kế tối thiểu (MDMT) thấp hơn nhiệt độ tối thiểu cho phép của vật liệu đã chọn.

Theo ASME B31.3, bạn có thể tìm thấy thông tin này trong Bảng A-1, liệt kê các vật liệu và nhiệt độ thiết kế tối thiểu tương ứng.

Nếu bảng hiển thị giá trị số, đó là nhiệt độ thấp nhất mà vật liệu có thể được sử dụng mà không cần kiểm tra va đập.
👉 Nếu nhiệt độ thiết kế thấp hơn giá trị này — kiểm tra va đập trở nên bắt buộc.

Nếu bảng hiển thị ký hiệu chữ cái (A, B, C hoặc D) thay vì số, bạn phải tham khảo Hình 323.2.2A, trong đó cung cấp các đường cong độ dẻo dai (đường cong A–D) cho từng nhóm vật liệu.
👉 Bằng cách sử dụng độ dày của vật liệu, bạn xác định vị trí giao điểm của đường cong tương ứng để xác định nhiệt độ thấp nhất cho phép mà không cần thử nghiệm va đập.

Nếu nhiệt độ thiết kế của bạn thấp hơn giá trị này, thử nghiệm va đập sẽ được thực hiện ở nhiệt độ thiết kế và kết quả phải đáp ứng các tiêu chí chấp nhận trong Bảng 323.3.5-1


ASME #B313 #ImpactTesting #WeldingEngineering #MechanicalIntegrity #PressurePiping #EngineeringStandards #MaterialSelection #ProcessPiping #Metallurgy #WeldingInspection

ASME, B31.3, Thử nghiệm Va đập, Kỹ thuật Hàn, Tính toàn vẹn Cơ học, Đường ống Áp lực, Tiêu chuẩn Kỹ thuật, Lựa chọn Vật liệu, Đường ống Quy trình, Luyện kim, Kiểm tra Hàn

(St.)

Kỹ thuật

Lớp hàn gốc—lớp đầu tiên quyết định toàn bộ tính toàn vẹn của mối hàn

7

 

Lớp hàn gốc là đường hàn ban đầu hoặc lớp kim loại mối hàn đầu tiên lắng đọng dọc theo gốc của mối nối. Nó đóng một vai trò quan trọng trong việc xác định toàn bộ tính toàn vẹn của mối hàn bằng cách cung cấp một nền tảng vững chắc đảm bảo sự thâm nhập sâu và hợp nhất hoàn toàn của các vật liệu cơ bản tại mối nối. Đường chuyền gốc liên kết hai mảnh kim loại với nhau ở đế của chúng, thiết lập độ bền và độ bền của toàn bộ mối hàn. Các lần vượt qua tiếp theo được xây dựng trên nền tảng này để lấp đầy và hoàn thiện mối hàn. Việc vượt qua gốc được thực hiện tốt là điều cần thiết để tránh các khuyết tật như khe hở hoặc điểm yếu trong mối hàn, đảm bảo độ thâm nhập hoàn toàn và tính toàn vẹn của cấu trúc.​

 

Serdar Koldas

🔥Đây là lớp hàn gốc—lớp đầu tiên quyết định toàn bộ tính toàn vẹn của mối hàn.

Nếu giai đoạn này không được thực hiện đúng cách, mỗi lớp hàn tiếp theo chỉ che giấu vấn đề thay vì khắc phục nó.

Lớp hàn gốc chắc chắn đồng nghĩa với độ khít tốt, độ xuyên thấu đầy đủ, kiểm soát nhiệt và độ sạch.

Lớp hàn gốc yếu chỉ có một ý nghĩa: hư hỏng trong tương lai.

Hãy xem kỹ bức ảnh này.

Bạn có cho rằng lớp hàn gốc này có thể chấp nhận được để tiếp tục với các lớp tiếp theo không?

Bạn sẽ cải thiện điều gì trước khi chuyển sang lớp hàn nóng?

Hãy chia sẻ ý kiến ​​của bạn—mỗi thợ hàn và kiểm tra viên đều có quan điểm khác nhau, và đó là điều làm cho cuộc thảo luận này trở nên giá trị.

#InspecciónDeSoldadura #IngenieríaDeSoldadura #PasadaDeRaíz #AlineaciónCorrecta #CalidadDeSoldadura #VidaDeSoldador #RecipientesAPresión #Fabricación #ASME #UniónSoldada #InspecciónVisual #NDT #QAQC #DefectosDeSoldadura #ProcesoDeSoldadura #MantenimientoIndustrial #ComunidadDeIngenieros #InspecciónEnCampo #SoldaduraDeTuberías #IntegridadDeSoldadura #IngenieríaMecánica

Kiểm tra hàn, Kỹ thuật hàn, Lớp hàn gốc, Căn chỉnh chính xác, Chất lượng hàn, Tuổi thọ hàn, Bình chịu áp, Sản xuất, ASME, Nối hàn, Kiểm tra trực quan, NDT, QAQC, Lỗi hàn, Quy trình hàn, Bảo trì công nghiệp, Cộng đồng kỹ thuật, Kiểm tra hiện trường, Hàn ống, Tính toàn vẹn hàn, Kỹ thuật cơ khí

Ch Seemab Nasrullah

Lớp hàn gốc – Nền tảng của mọi mối hàn 🔥

Lớp hàn gốc là mối hàn đầu tiên và quan trọng nhất — nó đảm bảo độ ngấu hoàn toàn và sự liên kết tốt giữa các kim loại cơ bản.

Nếu lớp hàn gốc yếu, toàn bộ mối hàn sẽ yếu — bất kể lớp hàn phủ trông đẹp mắt đến đâu.

Các khuyết tật thường gặp ở chân mối hàn:
⚙️ Thiếu độ xuyên thấu
⚙️ Thiếu độ liên kết
⚙️ Độ xuyên thấu quá mức
⚙️ Cắt ngắn hoặc rỗ khí

Để tránh khuyết tật:
✔️ Đặt khe hở và căn chỉnh chân mối hàn chính xác
✔️ Kiểm soát dòng điện và tốc độ di chuyển
✔️ Duy trì góc điện cực chính xác

👉 Mối hàn chỉ bền chắc bằng chân mối hàn. 💪

(St.)

Kỹ thuật

ASME BPVC Phần VIII, Div. 1 UCL-34

6

ASME BPVC Phần VIII, Div. 1 UCL-34 giải quyết cụ thể các yêu cầu xử lý nhiệt sau hàn (PWHT) liên quan đến lớp phủ kim loại trên bình chịu áp lực. Điều khoản này đảm bảo PWHT thích hợp cho các bộ phận bình chịu áp lực có lớp phủ tích hợp chống ăn mòn hoặc lớp phủ kim loại hàn, đặc biệt là sau khi lớp phủ được áp dụng. UCL-34 nhằm mục đích kiểm soát ứng suất dư và quản lý các điều kiện luyện kim sau khi phủ mối hàn.

Những điểm chính về UCL-34 bao gồm:

  • Nó liên quan đến PWHT để giảm ứng suất do lớp phủ mối hàn chống ăn mòn.

  • Độ dày chi phối để tính toán thời gian PWHT thường dựa trên độ dày của lớp phủ mối hàn chứ không phải độ dày kim loại cơ bản dưới lớp phủ, đặc biệt là đối với các mặt bích mà lớp phủ ảnh hưởng đến độ dày mối hàn.

  • Điều này có nghĩa là đối với một tàu có lớp phủ mối hàn dày 2 “và mặt bích dày 8″, thời gian PWHT được điều chỉnh bởi độ dày lớp phủ mối hàn 2”. Độ dày mặt bích ảnh hưởng đến tốc độ làm nóng và làm mát nhưng không kiểm soát thời gian PWHT.

  • Bài báo làm rõ rằng các yêu cầu về PWHT giúp giảm thiểu sự giòn của kết tủa cacbua và nguy cơ ăn mòn tổng thể sau khi thi công lớp phủ.

Do đó, UCL-34 cung cấp hướng dẫn quan trọng về quy trình PWHT sau khi áp dụng các lớp phủ chống ăn mòn trong xây dựng bình chịu áp lực để đảm bảo an toàn, tính toàn vẹn luyện kim và tuân thủ quy tắc trong các tàu ASME Phần VIII Phân khu 1.

 

 

Serdar Koldas

🔥YÊU CẦU CỦA PHẦN UCL ĐỐI VỚI BÌNH CHỨC ÁP LỰC HÀN ĐƯỢC CHẾ TẠO BẰNG VẬT LIỆU CÓ LỚP PHỦ kết HỢP CHỐNG ĂN MÒN, LỚP PHỦ KIM LOẠI HÀN HOẶC LỚP LÓT ÁP DỤNG

Điều gì xảy ra khi Xử lý Nhiệt Sau Hàn (PWHT) trên thép không gỉ gặp sự cố?

Nhiều kỹ sư cho rằng PWHT luôn có lợi — nhưng ASME Mục VIII nhắc nhở chúng ta rằng không phải mối hàn nào cũng cần xử lý nhiệt.

Khi áp dụng không đúng cách, PWHT có thể phá hủy những gì nó được thiết kế để bảo vệ.

Trong thép không gỉ austenit, nhiệt độ quá cao hoặc thời gian giữ nhiệt quá lâu có thể kích hoạt sự hình thành pha sigma — một hợp chất liên kim giòn dẫn đến nứt, mất độ dẻo và hỏng sớm dưới áp suất.

Theo ASME BPVC Mục VIII, Phân khu 1 – UCL-34, tiêu chuẩn này cảnh báo rõ ràng rằng PWHT không đúng cách có thể làm cho vật liệu chống ăn mòn yếu hơn chứ không phải mạnh hơn.

Nói cách khác, ý định tốt không đảm bảo chất lượng luyện kim tốt.

Một bình chứa an toàn không chỉ là đáp ứng biểu đồ nhiệt độ theo quy định — mà là hiểu được hành vi của vật liệu trong từng giai đoạn chế tạo.

Đây là lý do tại sao kiểm soát chất lượng thực sự không phải là giấy tờ mà là nhận thức về luyện kim, giám sát có hiểu biết và một văn hóa coi “xử lý nhiệt” là một khoa học, chứ không phải là một tiêu chí.

Bạn đã bao giờ gặp trường hợp xử lý nhiệt sau hàn gây hại nhiều hơn lợi chưa?

Hãy cùng tìm hiểu về điều đó.

#ASME #PressureVessel #Welding #PWHT #Metallurgy #QualityControl #Engineering #Fabrication #Inspection #StainlessSteel #MechanicalIntegrity #MaterialScience #NDT #WPS #PQR #HeatTreatment #CorrosionResistance #SafetyEngineering #Manufacturing #ProcessIndustry

ASME, Bình áp lực, Hàn, PWHT, Luyện kim, Kiểm soát chất lượng, Kỹ thuật, Chế tạo, Kiểm tra, Thép không gỉ, Tính toàn vẹn cơ học, Khoa học vật liệu, NDT, WPS, PQR, Xử lý nhiệt, Chống ăn mòn, Kỹ thuật an toàn, Sản xuất, Công nghiệp quy trình

(St.)

Kỹ thuật

ISO 15614-1 so với ASME Phần IX

6

 

ISO 15614-1 so với ASME Phần IX

ISO 15614-1 và ASME Phần IX đều là tiêu chuẩn để đánh giá quy trình hàn nhưng khác nhau về phạm vi, phạm vi và yêu cầu.

Phạm vi và phạm vi bảo hiểm:

  • ASME Phần IX bao gồm trình độ của thợ hàn, người vận hành hàn, quy trình hàn, thợ hàn và quy trình hàn cho nhiều loại kim loại đen và kim loại màu bao gồm thép, đồng, niken, nhôm, titan và hợp kim zirconium. Nó cũng bao gồm các quy trình hàn khác nhau như oxy-khí, hồ quang, chùm điện, điện trở và hàn pha rắn.

  • ISO 15614-1 tập trung vào việc đánh giá các quy trình hàn dành riêng cho các mối hàn hồ quang và khí trong hợp kim thép và niken. Các hợp kim và quy trình khác được đề cập bởi các bộ phận liên quan của sê-ri ISO 15614.

Cấp độ và tính nghiêm ngặt:

  • ISO 15614-1 có hai cấp độ trình độ: Cấp độ 1, có thể so sánh với ASME Phần IX và Cấp độ 2, nghiêm ngặt hơn ASME Phần IX.

  • ASME Phần IX phân loại các thông số hàn là các biến Thiết yếu, Cần thiết bổ sung và Không thiết yếu. ISO 15614-1 không xác định rõ ràng các danh mục này nhưng đề cập đến các thay đổi tham số để đánh giá. Các biến bổ sung và không cần thiết trong ASME IX có vai trò cụ thể, đặc biệt gắn liền với các yêu cầu về độ dẻo dai, trong khi ISO chỉ ngụ ý các thông số nào cần được đánh giá.

Nhóm vật liệu:

  • Cả hai tiêu chuẩn đều xác định các nhóm vật liệu để giảm các yêu cầu về trình độ, với các nhóm tương tự nhưng không giống hệt nhau.

Kiểm tra và tài liệu:

  • ASME IX hoạt động giống như một cuốn sổ tay chứa tất cả thông tin cần thiết bao gồm WPS, PQR, nhóm vật liệu và biến trong một tài liệu.

  • ISO 15614-1 đề cập đến các tiêu chuẩn khác cho nhiều đối tượng và tập trung vào PQR trong chính tiêu chuẩn.

  • ISO 15614-1 yêu cầu kiểm tra trực quan bắt buộc, NDE bề mặt và thể tích, thử nghiệm uốn cong, thử nghiệm độ bền kéo, khắc vĩ mô, khảo sát độ cứng và thử nghiệm va đập trong một số điều kiện nhất định.

  • ASME Phần IX bắt buộc các thử nghiệm uốn cong và thử nghiệm độ bền kéo nhưng không phải tất cả các thử nghiệm NDE và các thử nghiệm khác theo yêu cầu của ISO 15614-1 trừ khi được quy định bởi mã ứng dụng hoặc hợp đồng.

Chứng nhận:

  • Tem Mã ASME yêu cầu tuân thủ tất cả các kích thước mẫu ASME, hiệu chuẩn và hệ thống chất lượng được ASME công nhận.

  • ISO 15614-1 có thể được sử dụng như một thủ tục đánh giá tương đương nếu được khách hàng hoặc cơ quan có thẩm quyền chấp nhận.

Tóm lại, ASME Phần IX bao gồm nhiều loại vật liệu và quy trình hơn với việc phân loại chi tiết hơn về các biến và tính linh hoạt để dập, trong khi ISO 15614-1 tập trung nhiều hơn vào thép và hợp kim niken với hai cấp độ chất lượng và các yêu cầu thử nghiệm quy định hơn ở cấp độ cao hơn. Chúng có thể so sánh về mặt kỹ thuật ở Cấp độ 1 của ISO 15614-1 nhưng ASME có phạm vi rộng hơn và thường linh hoạt hơn về ứng dụng và phạm vi quy trình.

 

Govind Tiwari,PhD

ISO 15614-1 so với ASME Sec. IX 🔥

Khi đánh giá quy trình hàn, ISO 15614-1 và ASME Mục IX là những tiêu chuẩn được áp dụng rộng rãi nhất. Cả hai đều có chung mục đích — đảm bảo tính toàn vẹn của mối hàn — nhưng chúng khác nhau về cấu trúc, tính linh hoạt và diễn giải kỹ thuật.

🔍 Điểm nổi bật so sánh
➤Phạm vi:

ISO bao gồm hàn sản xuất, hàn sửa chữa và hàn đắp cho thép và hợp kim niken; ASME mở rộng sang hàn phủ, hàn cứng và hàn phủ cho các vật liệu như CS, SS, Ni, Ti, Cu và Al — phạm vi rộng hơn.

➤Mức độ Chứng nhận:
ISO sử dụng hai mức (Mức 1 ≈ ASME IX; Mức 2 nghiêm ngặt hơn), trong khi ASME áp dụng một mức duy nhất với các biến số thiết yếu, không thiết yếu và bổ sung.
➤Cấu trúc:
ISO tham chiếu đến nhiều tiêu chuẩn hỗ trợ (15608, 9606, v.v.); ASME hợp nhất tất cả các yêu cầu trong một tập hợp toàn diện.
➤Biến số:
ISO dựa trên việc chứng nhận dựa trên các thay đổi tham số; ASME định nghĩa rõ ràng các biến số thiết yếu/không thiết yếu theo từng quy trình — cách tiếp cận có cấu trúc hơn.
➤Phân nhóm vật liệu:
ISO tuân theo 15608 (Nhóm 1–11) với TR 20172–74; ASME sử dụng P-No. & G-No. — tương tự về mặt khái niệm nhưng được đặt tên khác nhau.
➤Phân loại điện cực:

Cả hai đều định nghĩa F-No. và A-No. — cùng một logic theo các hệ thống đánh số khác nhau.
➤Mẫu thử & Loại mối nối:
Cả hai đều chấp nhận tấm hoặc ống để đánh giá tất cả các cấu hình mối nối; mối hàn xuyên thấu hoàn toàn được đánh giá cho mối hàn toàn phần, một phần và góc.
➤Kiểm tra & Khảo sát:
Bảng 1 của ISO so với ASME QW-451 — cả hai đều yêu cầu thử nghiệm kéo, uốn và va đập; độ cứng bắt buộc theo ISO, tùy chọn theo ASME.
➤Va chạm & Độ cứng:
Cả hai đều sử dụng quy tắc 3 mẫu; ISO yêu cầu giá trị trung bình ≥ giá trị quy định (một giá trị có thể là 70% tối thiểu). ASME áp dụng các giới hạn tương tự nhưng ít mang tính quy định hơn. ISO bổ sung độ cứng (HV10) — kiểm soát chặt chẽ hơn.
➤Đánh giá Độ dày & Đường kính:
ISO và ASME có triết lý tương tự, nhưng phạm vi đánh giá số khác nhau; cần cẩn thận để tuân thủ nhiều quy tắc.
➤Quy trình hàn & Nhiều quy trình:
ISO yêu cầu đánh giá độc lập cho mỗi quy trình; ASME cho phép đánh giá kết hợp (nhiều quy trình) với tài liệu biến đổi phù hợp — linh hoạt hơn.

➤Loại dòng điện:
ISO quy định rõ ràng dòng điện AC/DC/xung; ASME coi dòng điện là không thiết yếu.

💡 NHỮNG ĐIỀU CẦN LƯU Ý
ISO 15614-1 nghiêm ngặt hơn, đặc biệt là ở Cấp độ 2, và nhấn mạnh vào việc kiểm tra chi tiết.
Mục IX của ASME rộng hơn và linh hoạt hơn, đặc biệt là đối với các ứng dụng đa quy trình và đa vật liệu.
Cả hai đều đảm bảo tính toàn vẹn, khả năng lặp lại và an toàn của mối hàn — sự khác biệt nằm ở cấu trúc, triết lý và tính nghiêm ngặt của thử nghiệm.
Việc so sánh các nhóm ISO 15608 với Mã số P của ASME là rất quan trọng đối với các dự án EPC và chế tạo toàn cầu.

Govind Tiwari,PhD 


#Welding #ASME #ISO15614 #QualityEngineering #Fabrication #NDT #WPS #EPC #WeldingEngineering #GovindTiwariPhD

Hàn, ASME, ISO15614, Kỹ thuật Chất lượng, Chế tạo, NDT, WPS, EPC, Kỹ thuật Hàn, TiwariPhD

(St.)

Kỹ thuật

BS EN 287-1, ISO 9606-1 và ASME Phần IX

8

BS EN 287-1, ISO 9606-1 và ASME Phần IX

BS EN 287-1, ISO 9606-1 và ASME Phần IX là các tiêu chuẩn chính điều chỉnh trình độ hàn, nhưng chúng khác nhau về phạm vi và chi tiết:
  • BS EN 287-1 là một tiêu chuẩn Châu Âu cũ hơn đủ điều kiện cho thợ hàn dựa trên các nhóm vật liệu và độ dày của mẹ. Nó đang được thay thế bằng ISO 9606-1, dựa trên trình độ chuyên môn về các nhóm vật liệu độn và độ dày kim loại hàn, mang lại sự hài hòa toàn cầu hơn và phù hợp hơn với các thực tiễn ASME Phần IX. ISO 9606-1 cũng cung cấp nhiều tùy chọn để xác nhận lại trình độ, không giống như EN 287-1 có một phương pháp duy nhất. Cả hai đều chủ yếu liên quan đến các bài kiểm tra trình độ thợ hàn và tiêu chí chấp nhận của họ.

  • ASME Phần IX là một phần của Bộ luật Nồi hơi và Bình chịu áp lực ASME tập trung vào trình độ của quy trình hàn và hiệu suất của thợ hàn. Nó bao gồm các yêu cầu chi tiết đối với Hồ sơ đánh giá quy trình (PQR), Thông số kỹ thuật quy trình hàn (WPS) và Chứng chỉ hiệu suất thợ hàn (WPQ). ASME IX không chỉ bao gồm trình độ thợ hàn mà còn bao gồm trình độ quy trình và người vận hành, các biến thiết yếu và các nhóm vật liệu như số P, số F và số A. Nó được sử dụng rộng rãi trong xây dựng bình áp lực và nồi hơi.

Tóm lại:

Khía cạnh BS EN 287-1 Tiêu chuẩn ISO 9606-1 ASME Phần IX
Tập trung Trình độ thợ hàn Trình độ thợ hàn Quy trình và trình độ thợ hàn
Cơ sở trình độ chuyên môn Nhóm vật liệu mẹ Nhóm vật liệu độn Nhóm vật liệu (P, F, số A)
Xác nhận lại bằng cấp Phương pháp đơn Nhiều lựa chọn Được xác định thông qua các bài kiểm tra tái thẩm định
Phạm vi Tiêu chuẩn Châu Âu Tiêu chuẩn quốc tế Mã có trụ sở tại Hoa Kỳ cho bình chịu áp lực và nồi hơi
Bao gồm thông số kỹ thuật thủ tục Không Không Có (WPS, PQR, WPQ)

Tiêu chuẩn ISO 9606-1 được thiết kế để hài hòa toàn cầu và phù hợp hơn với ASME Phần IX so với BS EN 287-1. ASME Phần IX có phạm vi rộng hơn, bao gồm các trình độ quy trình hàn ngoài trình độ thợ hàn.

Các tiêu chuẩn này phục vụ các mục đích khác nhau nhưng có liên quan và được lựa chọn dựa trên mã dự án và các yêu cầu của khu vực hoặc ngành.

 

 

Harminder Kumar Khatri [WELD MASTER]

Tiêu chuẩn Chứng nhận Thợ hàn – So sánh Nhanh
Tiêu chuẩn hàn xác định cách thức kiểm tra và chứng nhận thợ hàn để đảm bảo khả năng tạo ra mối hàn chắc chắn và không khuyết tật. Ba tiêu chuẩn chính — BS EN 287-1, ISO 9606-1 và ASME Phần IX — được so sánh bên dưới để hiểu rõ hơn.
Khía cạnh BS EN 287-1 ISO 9606-1 ASME Phần IX


#WeldingTrainer #WelderQualification #ASME #ISO9606 #BSEN287 #WeldingTraining #WeldingKnowledge #Eurotech #WeldInspector #WeldMaster

Huấn luyện viên Hàn, Chứng nhận Thợ hàn, ASME, ISO 9606, BS EN 287, Đào tạo Hàn, Kiến thức Hàn, Eurotech, Thanh tra Hàn, Thợ hàn

(St.)

Kỹ thuật

Các yếu tố chính của việc đánh dấu mặt bích

19

Các yếu tố chính của đánh dấu mặt bích

Các yếu tố chính của đánh dấu mặt bích thường bao gồm:
  1. Đường kính danh nghĩa (DN): Cho biết đường kính ống mà mặt bích phù hợp, được đo bằng milimét (ví dụ: DN100).

  2. Áp suất danh nghĩa (PN) hoặc Lớp áp suất: Cho biết định mức áp suất thiết kế mà mặt bích có thể chịu được. Các đơn vị phổ biến là bar hoặc psi, ví dụ: PN16 hoặc Class 150.

  3. Mã vật liệu hoặc đặc điểm kỹ thuật: Xác định vật liệu mặt bích, chẳng hạn như mã ASTM như A105 cho thép cacbon hoặc các loại thép không gỉ như 304 hoặc 316. Điều này rất quan trọng đối với sức mạnh và khả năng chống ăn mòn.

  4. Mã tiêu chuẩn: Hiển thị tiêu chuẩn thiết kế và sản xuất mà mặt bích tuân thủ, chẳng hạn như tiêu chuẩn ANSI / ASME B16.5 (Mỹ), EN 1092-1 (Châu Âu) hoặc GB / T 9119 (Trung Quốc).

  5. Nhận dạng nhà sản xuất: Bao gồm tên, logo hoặc ID duy nhất của nhà sản xuất, hỗ trợ truy xuất nguồn gốc.

  6. Loại mặt: Cho biết thiết kế mặt bích (ví dụ: mặt nhô lên, mặt phẳng), ảnh hưởng đến khả năng tương thích làm kín.

  7. Độ dày danh nghĩa của đường ống mà nó kết nối: Giúp đảm bảo khả năng tương thích hàn và lắp phù hợp.

  8. Số lô hoặc số nhiệt: Để truy xuất nguồn gốc đến các lô sản xuất cụ thể, quan trọng trong việc kiểm soát chất lượng và thu hồi.

  9. Xếp hạng áp suất-nhiệt độ: Đôi khi được đánh dấu là ký hiệu “CLASS”, đặc biệt là trong tiêu chuẩn Mỹ, cho biết sự phù hợp với sự kết hợp áp suất và nhiệt độ cụ thể.

  10. Điều kiện xử lý nhiệt: Các chỉ dẫn như “N” để chuẩn hóa hoặc “QT” để làm nguội và ủ, mô tả cách mặt bích được xử lý để đạt được các tính chất cơ học mong muốn.

Các dấu hiệu này được khắc trên mặt bích để bền và dễ đọc trong suốt thời gian sử dụng của mặt bích, đảm bảo nhận dạng chính xác, tuân thủ, an toàn và phù hợp với ứng dụng hệ thống đường ống.

Tóm lại, các yếu tố chính đánh dấu mặt bích dùng để truyền tải kích thước, định mức áp suất, vật liệu, tuân thủ tiêu chuẩn, nhà sản xuất và truy xuất nguồn gốc của mặt bích, những yếu tố cần thiết cho việc lắp đặt, bảo trì và đảm bảo an toàn trong hệ thống đường ống công nghiệp.

 

 

Govind Tiwari,PhD

Các yếu tố chính của việc đánh dấu mặt bích 🔥

Mặt bích là điểm kết nối quan trọng trong hệ thống đường ống — kết nối đường ống, van và thiết bị, đồng thời duy trì tính toàn vẹn của hệ thống dưới áp suất.

Để đảm bảo vận hành an toàn và tuân thủ, mỗi mặt bích phải được đánh dấu chính xác với các chi tiết nhận dạng chính xác định chất lượng, khả năng truy xuất nguồn gốc và khả năng phù hợp để sử dụng.

⚙️ Các yếu tố đánh dấu mặt bích thiết yếu:

✅ 1. Nhận dạng nhà sản xuất / Logo
Đảm bảo khả năng truy xuất nguồn gốc và trách nhiệm giải trình bằng cách xác định nhà sản xuất ban đầu.
✅ 2. Ký hiệu vật liệu (Cấp ASTM)
Chỉ định vật liệu và bất kỳ phương pháp xử lý nhiệt nào theo tiêu chuẩn ASTM — xác nhận độ bền và khả năng tương thích với ứng dụng.

✅ 3. Kiểu mặt
Xác định loại bề mặt làm kín — Mặt nổi (RF), Mối nối kiểu vòng (RTJ), Mặt phẳng (FF) — để lựa chọn gioăng chính xác và lắp ráp không bị rò rỉ.
✅ 4. Tiêu chuẩn sử dụng
Chỉ ra mã quản lý (ví dụ: ASME, EN, DIN), đảm bảo tuân thủ kích thước và thiết kế.
✅ 5. Độ dày ống danh nghĩa (cho đầu hàn)
Đảm bảo mối hàn khít và độ bền cơ học của mối nối.
✅ 6. Định mức áp suất & Đường kính danh nghĩa
Chỉ định cấp áp suất (ví dụ: 150#, 300#) và kích thước — rất quan trọng đối với sự an toàn và khả năng tương thích của hệ thống.
✅ 7. Số lô / Nhiệt / Số sê-ri
Cung cấp khả năng truy xuất nguồn gốc đầy đủ để xác minh chất lượng và chứng nhận vật liệu.

🧭 Tại sao việc đánh dấu lại quan trọng:

🔹 Xác minh tính phù hợp — Xác nhận rằng mặt bích đáp ứng các yêu cầu về thiết kế và vận hành.
🔹 Phù hợp Vật liệu & Định mức — Ngăn ngừa sự không phù hợp có thể dẫn đến hỏng hóc hoặc thời gian ngừng hoạt động.
🔹 Chất lượng & Tuân thủ — Hỗ trợ các quy trình lập tài liệu, kiểm tra và kiểm toán.

🛠️ Công nghệ Đánh dấu cũng quan trọng:

Các dấu hiệu trên mặt bích phải luôn rõ ràng, bền bỉ và dễ đọc trong suốt thời gian sử dụng — ngay cả khi chịu nhiệt, ăn mòn hoặc hao mòn.
Sử dụng thiết bị đánh dấu chính xác đảm bảo độ chính xác, tính lâu dài và khả năng truy xuất nguồn gốc — những trụ cột chính của an toàn và độ tin cậy.

🧩 Tóm tắt:

Việc đánh dấu mặt bích đúng cách không chỉ là hình thức — mà còn là nền tảng cho:
✅ An toàn
✅ Độ tin cậy
✅ Đảm bảo Chất lượng
✅ Tính toàn vẹn lâu dài
====
Nếu bạn thấy thông tin này hữu ích, hãy chia sẻ để giúp đỡ những người khác trong ngành

Govind Tiwari,PhD 


#Flange #Piping #Quality #Inspection #QHSE #MechanicalIntegrity #ASME #Engineering #Traceability #GovindTiwariPhD

Mặt bích, Đường ống, Chất lượng, Kiểm tra, QHSE, Tính toàn vẹn cơ khí, ASME, Kỹ thuật, Khả năng truy xuất nguồn gốc, TiwariPhD

(St.)

Kỹ thuật

Xử lý nhiệt trước và sau hàn (PWHT) đ

15

Làm nóng trước so với xử lý nhiệt sau hàn (PWHT)

Xử lý nhiệt trước và sau hàn (PWHT) đều là các quy trình xử lý nhiệt quan trọng trong hàn nhưng phục vụ các mục đích khác nhau và được áp dụng ở các giai đoạn khác nhau.

Làm nóng sơ bộ liên quan đến việc làm nóng kim loại cơ bản trước khi hàn. Chức năng chính của nó là làm chậm tốc độ làm mát sau khi hàn, giảm gradient và ứng suất nhiệt độ, giảm thiểu nguy cơ nứt do hydro gây ra và cải thiện chất lượng mối hàn bằng cách kiểm soát những thay đổi luyện kim gần vùng hàn. Làm nóng sơ bộ giúp hydro khuếch tán ra ngoài và ngăn ngừa nứt do làm mát nhanh và ứng suất nhiệt.

PWHT được thực hiện sau khi hàn và liên quan đến quá trình sưởi ấm và làm mát có kiểm soát được thiết kế để giảm ứng suất dư do hàn, loại bỏ hydro khuếch tán và cải thiện hoặc khôi phục cấu trúc vi mô và các tính chất cơ học, chẳng hạn như độ dẻo dai và độ dẻo, đặc biệt là trong thép hợp kim hoặc hợp kim thấp. PWHT có thể bao gồm các phương pháp giảm căng thẳng, bình thường hóa, ủ hoặc lão hóa tùy thuộc vào vật liệu và điều kiện sử dụng để giảm độ cứng trong vùng bị ảnh hưởng nhiệt và ngăn ngừa nứt hoặc hỏng hóc trong tương lai khi chịu tải dịch vụ.

Tóm lại:

Khía cạnh Preheat Xử lý nhiệt sau hàn (PWHT)
Thời gian Trước khi hàn Sau khi hàn
Mục đích Làm mát chậm, giảm nguy cơ nứt Giảm ứng suất dư, cải thiện tính chất mối hàn
Kiểm soát hydro Cho phép khuếch tán hydro trước khi mối hàn đông đặc Loại bỏ hydro khuếch tán sau khi hàn
Kiểm soát ứng suất Giảm gradient nhiệt và nguy cơ nứt Giảm ứng suất do hàn gây ra
Hiệu ứng luyện kim Kiểm soát tốc độ làm mát để tránh cấu trúc vi mô cứng Tinh chỉnh hoặc khôi phục cấu trúc vi mô mối hàn
Thường được sử dụng cho Thép cacbon, phần dày Thép hợp kim và hợp kim thấp, mối hàn dày hoặc quan trọng

Cả hai quy trình đều cải thiện chất lượng và tính toàn vẹn của mối hàn nhưng được áp dụng dựa trên vật liệu, độ dày mối hàn và yêu cầu dịch vụ để ngăn ngừa khuyết tật và đảm bảo hiệu suất lâu dài.

🔥 Xử lý nhiệt trước khi hàn so với Xử lý nhiệt sau khi hàn (PWHT): Quản lý nhiệt để đảm bảo tính toàn vẹn của mối hàn

Trong hàn, nhiệt không chỉ là một phần của quy trình — mà còn là một công cụ để kiểm soát chất lượng. Hai kỹ thuật nhiệt chính được sử dụng để quản lý hành vi hàn và ngăn ngừa hư hỏng là Xử lý nhiệt trước khi hàn và Xử lý nhiệt sau khi hàn (PWHT). Mặc dù cả hai đều liên quan đến việc kiểm soát nhiệt độ, nhưng chúng phục vụ các mục đích rất khác nhau ở các giai đoạn khác nhau của chu trình hàn.

💡 Xử lý nhiệt trước khi hàn là gì?
Xử lý nhiệt trước là quá trình tăng nhiệt độ của vật liệu cơ bản trước khi hàn. Làm chậm tốc độ nguội sau khi hàn, giúp:

Giảm nguy cơ nứt do hydro gây ra

Giảm thiểu ứng suất dư

Cải thiện độ ngấu và độ ngấu của mối hàn

Giảm độ cứng ở vùng ảnh hưởng nhiệt (HAZ)

📌 Thường được sử dụng cho:

Thép cacbon, thép hợp kim thấp

Thép tiết diện dày

Vật liệu có độ bền cao

🔥 PWHT là gì?

Xử lý nhiệt sau hàn (PWHT) là một quá trình gia nhiệt và làm nguội có kiểm soát được áp dụng sau khi hàn. Nó được thiết kế để:
Giảm ứng suất dư
Cải thiện độ dẻo dai và độ dai
Giảm độ cứng trong vùng HAZ
Khôi phục các đặc tính vật liệu bị thay đổi do hàn
📌 Thường được sử dụng cho:
Bình chịu áp lực
Đường ống
Thép hợp kim và thép cường độ cao
Các thành phần quan trọng theo tiêu chuẩn (ASME, API)

🛠️ Thực hành tốt nhất
Luôn tuân thủ các yêu cầu của WPS và PQR
Sử dụng các thiết bị hiệu chuẩn để kiểm soát nhiệt độ
Ghi lại hồ sơ nhiệt độ và thời gian giữ
Đảm bảo gia nhiệt đồng đều trên toàn bộ vùng hàn
Kết hợp cả hai kỹ thuật khi được yêu cầu theo tiêu chuẩn hoặc loại vật liệu

🔧 Gia nhiệt sơ bộ và PWHT không thể thay thế cho nhau — nhưng khi kết hợp, chúng tạo thành một chiến lược mạnh mẽ để đảm bảo tính toàn vẹn của mối hàn. Hiểu rõ thời điểm và lý do áp dụng từng kỹ thuật sẽ giúp mối hàn an toàn hơn, chắc chắn hơn và tuân thủ tiêu chuẩn.


#PreheatWelding
#PWHT
#HeatTreatment
#WeldThermalControl
#WeldingHeatManagement
#CarbonSteelWelding
#HighStrengthSteels
#WeldingCodes
#ASME
#AWSWelding
#API1104

Gia Nhiệt Trước khi Hàn, PWHT, Xử Lý Nhiệt, Kiểm Soát Nhiệt Hàn, Quản Lý Nhiệt Hàn, Hàn Thép Carbon, Thép Cường Độ Cao, Quy Định Hàn, ASME, AWSWelding, API 1104
(St.)
Kỹ thuật

Tem ASME và các ứng dụng của chúng

15

Tem mã ASME và ứng dụng của chúng

Tem mã ASME là nhãn hiệu chính thức cho biết một bộ phận, bình hoặc hệ thống đã được thiết kế, sản xuất và thử nghiệm theo tiêu chuẩn Bộ luật nồi hơi và bình chịu áp lực (BPVC) của Hiệp hội Kỹ sư Cơ khí Hoa Kỳ (ASME). Chúng rất quan trọng để đảm bảo an toàn, độ tin cậy và tuân thủ của thiết bị hoạt động dưới áp suất và nhiệt độ cao.

Tem mã ASME chính và các ứng dụng của chúng:

  • Tem U: Các nhà sản xuất chứng nhận đáp ứng các yêu cầu kiểm soát chất lượng ASME BPVC để thiết kế, chế tạo, kiểm tra và thử nghiệm bình chịu áp lực chưa nung (Phần VIII Phân khu 1). Đây là tem chính cho các bình chịu áp lực đảm bảo tuân thủ các tiêu chuẩn an toàn bắt buộc.

  • Tem U2: Tương tự như tem chữ U nhưng áp dụng cho các bình chịu áp lực đáp ứng các quy tắc thiết kế và chế tạo thay thế theo Mục VIII Mục 2 của BPVC.

  • Tem S: Cho phép các nhà sản xuất chế tạo các bộ phận giữ áp suất tuân thủ ASME, nồi hơi điện và đường ống điện, yêu cầu tuân thủ các chương trình đảm bảo chất lượng ASME.

  • Tem R: Được ban hành bởi Hội đồng Kiểm tra Nồi hơi và Bình áp lực Quốc gia, nó chứng nhận các tổ chức sửa chữa và thay đổi thiết bị giữ áp suất như nồi hơi và bình chịu áp lực. Các tổ chức sửa chữa phải chứng minh chuyên môn hàn, vật liệu và kiểm tra, đồng thời trải qua các cuộc đánh giá để được chứng nhận.

  • Tem UV: Áp dụng cho việc lắp ráp van giảm áp ASME Phần VIII.

  • Các nhãn hiệu ASME khác tồn tại cho các thiết bị giảm áp, có dấu chứng nhận thống nhất với các ký hiệu để chỉ ra các sản phẩm cụ thể.

Nhìn chung, những con tem này đảm bảo cho các cơ quan quản lý, khách hàng và ngành công nghiệp rằng thiết bị đáp ứng các tiêu chuẩn chất lượng và an toàn nghiêm ngặt, cho phép sử dụng an toàn trong các ứng dụng công nghiệp liên quan đến bình chịu áp lực, nồi hơi, đường ống và các hệ thống liên quan. Việc tuân thủ các mã ASME và việc sử dụng các tem này là không thể thiếu để chứng nhận nhà sản xuất, chấp nhận thiết bị và độ tin cậy hoạt động trong các lĩnh vực công nghiệp.

🔥 𝐀𝐒𝐌𝐄 𝐂𝐨𝐝𝐞 𝐒𝐭𝐚𝐦𝐩𝐬 — 𝐓𝐡𝐞 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐨𝐟 𝐒𝐚𝐟𝐞𝐭𝐲 & 𝐂𝐨𝐦𝐩𝐥𝐢𝐚𝐧𝐜𝐞

Bạn đã bao giờ để ý những dấu hiệu ASME nhỏ xíu trên bình chịu áp suất, nồi hơi hoặc bộ trao đổi nhiệt chưa — như “𝐒”, “𝐔”, “𝐇”, hay “𝐑”?
Mỗi cái đều kể một câu chuyện — về 𝐜𝐨𝐧𝐭𝐫𝐨𝐥, 𝐜𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧, 𝐚𝐧𝐝 𝐬𝐚𝐟𝐞𝐭𝐲 𝐮𝐧𝐝𝐞𝐫 𝐩𝐫𝐞𝐬𝐬𝐮𝐫𝐞.

Những con dấu này là một phần của Bộ luật Nồi hơi và Bình chịu áp lực ASME, xác định ai có thể:
• Thiết kế linh kiện 🧩
• Chế tạo hoặc lắp ráp linh kiện 🏗️
• Kiểm tra, thử nghiệm hoặc sửa chữa linh kiện 🔍

Ví dụ 👇
🔹 “S” — Nồi hơi công suất (Phần I)
🔹 “U” — Bình chịu áp lực (Phần VIII)
🔹 “R” — Sửa chữa & Thay đổi (NBIC)
🔹 “N” — Linh kiện hạt nhân (Phần III)
🔹 “UV / UD” — Thiết bị An toàn & Chống Rò rỉ

Mỗi chữ cái phản ánh 𝐚𝐮𝐭𝐡𝐨𝐫𝐢𝐳𝐞𝐝 𝐜𝐚𝐩𝐚𝐛𝐢𝐥𝐢𝐭𝐲, không chỉ là một quy tắc.

Họ đảm bảo thiết bị được chế tạo bởi một tổ chức được chứng nhận, tuân thủ nghiêm ngặt các quy trình thiết kế, vật liệu và kiểm tra — được xác minh bởi Thanh tra Ủy quyền (AI).

💬 Lần tới khi bạn nhìn thấy con dấu ASME — hãy nhớ rằng, nó không chỉ là một chữ cái trên thép.

Đó là dấu hiệu của sự chính trực, an toàn và chất lượng kỹ thuật.


#ASME #PressureVessel #BoilerCode #QualityEngineering #QAQC #Inspection #Welding #Fabrication #NDT #Manufacturing #MechanicalEngineering #IndustrialSafety #QualityAssurance #QualityControl #EngineeringStandards #NBIC #PressureEquipment #BoilerInspection #WeldingInspection #NuclearEngineering #PipingEngineering #ProcessIndustry #OilAndGas #Refinery #PowerPlant #HeavyEngineering #DesignValidation #CodeCompliance #EngineerLife #Metallurgy #WeldQuality #StructuralFabrication #HeatExchanger #IndustrialMaintenance #EngineeringCommunity #SafetyFirst #EngineeringWorld #MaintenanceEngineering #EnergySector #ReliabilityEngineering #FieldInspection #WeldInspector

ASME, Bình chịu áp suất, Mã nồi hơi, Kỹ thuật chất lượng, QAQC, Kiểm tra, Hàn, Chế tạo, NDT, Sản xuất, Kỹ thuật cơ khí, An toàn công nghiệp, Đảm bảo chất lượng, Kiểm soát chất lượng, Tiêu chuẩn kỹ thuật, NBIC, Thiết bị áp suất, Kiểm tra nồi hơi, Kiểm tra hàn, Kỹ thuật hạt nhân, Kỹ thuật đường ống, Công nghiệp chế biến, Dầu khí, Nhà máy lọc dầu, Nhà máy điện, Kỹ thuật công nghiệp nặng, Xác thực thiết kế, Tuân thủ quy định, cuộc sống Kỹ sư, Luyện kim, Chất lượng hàn, Chế tạo kết cấu, Bộ trao đổi nhiệt, Bảo trì công nghiệp, Cộng đồng kỹ thuật, An toàn là trên hết, Kỹ thuật thế giới, Kỹ thuật bảo trì, Ngành năng lượng, Kỹ thuật độ tin cậy, Kiểm tra hiện trường, Kiểm tra mối hàn
(St.)
Kỹ thuật

ASME BPVC Phần XIII (2021)

7

ASME BPVC Phần XIII (2021) thiết lập các quy tắc bảo vệ quá áp cho thiết bị điều áp như nồi hơi, bình chịu áp lực và hệ thống đường ống. Phần này hợp nhất và tiêu chuẩn hóa các yêu cầu liên quan đến thiết bị giảm áp và bảo vệ quá áp trước đây nằm rải rác trên các phần khác của BPVC.

Các khía cạnh chính của ASME BPVC Phần XIII bao gồm:

  • Khả năng áp dụng: Nó áp dụng khi được tham chiếu cụ thể bởi một mã hoặc tiêu chuẩn.

  • Bảo vệ quá áp bằng thiết kế hệ thống: Thiết bị có thể được bảo vệ bằng thiết kế hệ thống thay vì thiết bị giảm áp nếu một số phân tích chi tiết nhất định xác nhận không có nguồn áp suất nào vượt quá áp suất làm việc tối đa cho phép (MAWP).

  • Áp suất là tự giới hạn: Xác định các điều kiện mà áp suất được coi là tự giới hạn và vạch ra trách nhiệm của người dùng trong việc tiến hành phân tích đa ngành (sử dụng các phương pháp như HazOp, FMECA, v.v.) để xác minh an toàn.

  • Áp suất không tự giới hạn: Nếu áp suất không tự giới hạn, bảo vệ quá áp có thể chỉ bằng thiết kế hệ thống hoặc kết hợp với các thiết bị giảm áp, tùy thuộc vào đánh giá và phê duyệt điều kiện.

  • Tài liệu: Yêu cầu tài liệu chi tiết về sơ đồ quy trình, kịch bản vận hành và đảo lộn, mô tả thiết bị an toàn và phân tích áp suất.

  • Thiết bị được bảo hành: Bao gồm các yêu cầu đối với các thiết bị giảm áp khác nhau như van giảm áp (lò xo, vận hành thí điểm, kích hoạt bằng điện), đĩa vỡ, thiết bị chốt và van giảm áp và nhiệt độ.

  • Tiêu chuẩn hóa: Tập trung và cập nhật các yêu cầu về thiết bị quá áp thành một phần để đảm bảo tính nhất quán và rõ ràng. Các phần VIII trước (Mục 1, 2, 3) có các yêu cầu tương ứng được chuyển sang Phần XIII.

  • Phụ lục mới: Được thêm vào để chỉ ra các vị trí mới của các yêu cầu bảo vệ quá áp này.

  • Chứng nhận: Cho phép sử dụng Dấu chứng nhận ASME cho các thiết bị tuân thủ và thực hành lắp đặt.

Do đó, phần này cung cấp các quy tắc toàn diện bao gồm thiết kế, vật liệu, kiểm tra, lắp ráp, thử nghiệm và đánh dấu các thiết bị và hệ thống giảm áp và bảo vệ quá áp liên quan đến thiết bị điều áp, đảm bảo an toàn vận hành và tuân thủ quy tắc.

#asme #sectionviii #div1 #div2 #sectionXiii #overpressure_protection #system_design #mechanical #pressure_relief_device #prd #sis #hipps

asme, section vii, div.1, div.2, section Xiii, bảo vệ quá áp, thiết kế hệ thống, cơ khí, thiết bị giảm áp, prd, sis, hipps

Các điều khoản bảo vệ quá áp ban đầu (UG-125 đến UG-140) trong ASME Mục VIII, Phân mục 1 hiện đã được chuyển sang một Mục mới có tên là ASME Mục XIII và được đặt tên là “Quy tắc về Bảo vệ Quá áp” vào năm 2021 với phân tích toàn diện hơn về bảo vệ quá áp. Hiện tại, đây là một Mục riêng của ASME BPVC và giúp các kỹ sư dễ dàng hiểu được hiện tượng quá áp cũng như các phương pháp và thiết bị bảo vệ quá áp. Mục này cũng tham chiếu chéo các tiêu chuẩn API như API STD 521 và API STD 527.

Phần 13 của ASME Mục XIII đề cập đến các quy tắc về bảo vệ quá áp bằng thiết kế hệ thống. Trong “Phần Chung”, có đề cập rõ ràng rằng thiết bị chịu áp suất có thể được trang bị bảo vệ quá áp bằng thiết kế hệ thống thay cho thiết bị giảm áp (PRD) hoặc các PRD nếu tất cả các điều khoản của phần này được đáp ứng.

Do đó, nếu các biện pháp bảo vệ quá áp tuân thủ các điều khoản đã đề cập ở trên thì không cần thiết phải có PRD cơ khí. Điều này có nghĩa là hệ thống HIPPS tuân thủ các yêu cầu của Phần 13 có thể được triển khai để bảo vệ quá áp.

Đính kèm Phần 13 của ASME XIII trong bài đăng. Vui lòng tham khảo phần được tô sáng màu vàng.

Ankur.

(St.)
Kỹ thuật

Thép không gỉ austenit SS316L so với SS904L

24

SS316L so với SS904L

SS316L và SS904L đều là thép không gỉ austenit nhưng khác nhau đáng kể về thành phần, khả năng chống ăn mòn, chi phí và các ứng dụng điển hình.

Thành phần hóa học

  • SS316L có hàm lượng niken (10-14%), crom (16-18%) và molypden (2-3%) thấp hơn, với hàm lượng cacbon rất thấp (≤0,03%).

  • SS904L chứa niken cao hơn nhiều (23-28%), crom (19-23%), molypden (4-5%) và đồng bổ sung (1-2%) để tăng cường khả năng chống ăn mòn, với carbon ≤0,02%.​

Chống ăn mòn

  • SS904L cung cấp khả năng chống rỗ, ăn mòn kẽ hở và tấn công vượt trội bằng cách khử axit (đặc biệt là môi trường axit sunfuric và clorua).

  • SS316L được sử dụng rộng rãi cho các dịch vụ hàng hải và hóa chất nói chung nhưng có khả năng chống chịu kém hơn trong điều kiện axit khắc nghiệt hoặc clorua cao so với 904L.​

Tính chất cơ học

  • SS904L có độ bền kéo và năng suất cao hơn, phù hợp hơn cho các ứng dụng công nghiệp đòi hỏi khắt khe và môi trường nhiệt độ cao.

  • SS316L cung cấp độ bền kéo và khả năng hàn tốt, khiến nó trở nên phổ biến cho các thiết bị cấy ghép y tế, phụ kiện hàng hải, chế biến thực phẩm và sử dụng kết cấu chung.​

Chế tạo và chi phí

  • SS316L dễ hàn và chế tạo hơn và ít tốn kém hơn do hàm lượng hợp kim thấp hơn.

  • SS904L yêu cầu các kim loại phụ cụ thể và kiểm soát quy trình để hàn và chi phí cao hơn đáng kể do các nguyên tố hợp kim cao hơn của nó.​

Các ứng dụng tiêu biểu

Vật liệu Sử dụng phổ biến
SS316L Linh kiện hàng hải, công nghiệp thực phẩm, thiết bị y tế, đường ống, tiếp xúc với hóa chất vừa phải
SS904L Chế biến hóa chất, môi trường axit sunfuric, công nghiệp hóa dầu, khử mặn nước biển, vùng ăn mòn cao

Tóm lại, SS316L là thép không gỉ linh hoạt, tiết kiệm chi phí phù hợp với nhiều nhu cầu chống ăn mòn nói chung, trong khi SS904L là hợp kim hiệu suất cao phù hợp với môi trường hóa học có tính ăn mòn cao, nơi khả năng chống axit, clorua và chất khử lâu dài là điều cần thiết.​

🧭✨ SS316L so với SS904L

Loại thép không gỉ nào hoạt động tốt hơn trong môi trường ăn mòn?

✍️ Đăng bởi: Pipe Line DZ – Battaze Tarek
🇩🇿 Phiên bản 2025 | Tài liệu tham khảo học thuật dành cho Kỹ sư & Thanh tra

⚙️ 1️⃣ Điểm chung

Cả hai loại thép đều thuộc họ Thép không gỉ Austenit (SS) và có chung các đặc điểm sau:

Không nhiễm từ trong điều kiện ủ.

Khả năng hàn và tạo hình tuyệt vời.

Khả năng chống oxy hóa và ăn mòn axit nhẹ mạnh.

Không bị tôi cứng bằng nhiệt luyện.

🧪 2️⃣ Sự khác biệt chính về thành phần hóa học

Nguyên tố SS316L (%) SS904L (%) Hiệu quả kỹ thuật

Ni 10–14 23–28 Niken cao hơn cải thiện khả năng chống ăn mòn clorua và độ dẻo trong môi trường axit.
Cr 16–18 19–23 Tăng khả năng chống oxy hóa và chống ăn mòn cục bộ.
Mo 2.0–3.0 4.0–5.0 Tăng khả năng chống rỗ trong môi trường clorua.
Cu ≤ 0,5 1,0–2,0 Cải thiện khả năng chống chịu axit mạnh như H₂SO₄ và HCl.
C (tối đa) 0,03 0,02 Giảm nguy cơ nhạy cảm trong quá trình hàn.

🔹 Do đó, SS904L được phân loại là Thép không gỉ Super Austenitic, nhờ hàm lượng Niken, Molypden và Đồng cao hơn.

🌊 3️⃣ Hiệu suất ăn mòn

Môi trường Loại SS316L Hiệu suất Quan sát hiệu suất SS904L

Nước biển / Clorua Trung bình Xuất sắc (gần tương đương với Hợp kim 20) 904L cho khả năng chống rỗ và ăn mòn khe hở cao hơn nhiều.
Axit mạnh (H₂SO₄, HCl) Kém Rất tốt Việc bổ sung đồng làm tăng đáng kể khả năng chống axit.
Nhiệt độ cao (≤ 400 °C) Tốt Rất tốt Cả hai đều giữ được độ dẻo dai, nhưng 904L có độ ổn định nhiệt tốt hơn.
Hàn & Tạo hình Dễ dàng Có thể chấp nhận được nhưng cần kiểm soát nhiệt cẩn thận do hàm lượng Niken trong 904L cao hơn.

🧭 4️⃣ Ứng dụng điển hình

Ứng dụng công nghiệp bằng thép không gỉ

SS316L Hệ thống đường ống dầu khí, thiết bị lọc dầu, công nghiệp thực phẩm & dược phẩm, môi trường ôn hòa.

SS904L Nhà máy khử muối, thiết bị H₂SO₄ trong nhà máy hóa dầu, hệ thống vận chuyển clorua, thiết bị hàng hải và ngoài khơi.

🧩 5️⃣ Tóm tắt

Ưu điểm

Khả năng chống clorua và axit 🏆 SS904L
Khả năng hàn, tính khả dụng, chi phí SS316L
Tuổi thọ trong môi trường khắc nghiệt SS904L
Ứng dụng chung & hiệu quả chi phí SS316L

🔹 Kết luận cuối cùng:

Nếu môi trường vận hành của bạn ở mức trung bình và tiết kiệm chi phí ➜ hãy chọn SS316L.

Nếu hệ thống của bạn phải đối mặt với điều kiện ăn mòn hoặc axit cao ➜ SS904L là lựa chọn tốt hơn.

📚 Tài liệu tham khảo toàn cầu:

ASME B31.3 – Đường ống công nghệ

ASTM A312 / A240

NACE MR0175 / ISO 15156

Bảng dữ liệu thép không gỉ Outokumpu 2025

🧠 Bài viết giáo dục kỹ thuật – Đường ống DZ


#StainlessSteel #MaterialSelection #CorrosionResistance #PipeLineDZ #Engineering #OilAndGas #ASME #ASTM #NACE

Thép không gỉ, Lựa chọn vật liệu, Khả năng chống ăn mòn, Đường ống DZ, Kỹ thuật, Dầu khí, ASME, ASTM, NACE
(St.)