Kỹ thuật

Các vật liệu phổ biến nhất được sử dụng trong chế tạo bình chịu áp suất và các ứng dụng EPC của chúng

183

Hầu hết các vật liệu phổ biến được sử dụng trong chế tạo bình chịu áp lực và các ứng dụng EPC của chúng

Nguồn
streamtex.com.au
4 vật liệu hàng đầu lý tưởng trong sản xuất bình chịu áp lực
Thiết bị xử lý Upase
Bình chịu áp lực: các loại, vật liệu và công nghệ tiên tiến
Thiết kế & Kỹ thuật Sherwood
Bình áp lực và các ứng dụng của chúng: Hướng dẫn toàn diện
Tập đoàn Fabricon
EPC – Bình chịu áp lực – Fabricon Holdings
Giải thích vật liệu bình áp lực phổ biến nhất
Sáu vật liệu hàng đầu được sử dụng để chế tạo bình chịu áp lực
4 Vật liệu lý tưởng để chế tạo bình chịu áp lực - PALA Group
Vật liệu thích hợp cho bình chịu áp lực | Siêu kim loại Heanjia

Các vật liệu phổ biến nhất được sử dụng trong chế tạo bình chịu áp lực được lựa chọn dựa trên độ bền, khả năng chống ăn mòn, khả năng chịu nhiệt độ và hiệu quả chi phí của chúng. Những vật liệu này rất quan trọng để đảm bảo an toàn, độ bền và chức năng của bình chịu áp lực trong các ứng dụng công nghiệp khác nhau, đặc biệt là trong các dự án EPC (Kỹ thuật, Mua sắm, Xây dựng).

  • Khả năng chống ăn mòn và hóa chất cao, lý tưởng cho các tàu tiếp xúc với môi trường ẩm ướt, nhiệt độ cao hoặc xâm thực hóa học.

  • Các loại phổ biến bao gồm thép không gỉ 304 và 316.

  • Cung cấp khả năng hàn và độ bền tuyệt vời.

  • Được sử dụng rộng rãi trong các ứng dụng áp suất cao.

  • Thích hợp cho các ngành công nghiệp thực phẩm, dược phẩm, hóa chất và hóa dầu do đặc tính vệ sinh của nó128.

  • Vật liệu được sử dụng phổ biến nhất, đặc biệt là đối với bình áp suất thấp đến trung bình.

  • Độ bền kéo mạnh và khả năng chống rung và sốc tốt.

  • Tiết kiệm chi phí và dễ tái chế.

  • Thường được sử dụng trong các ngành công nghiệp dầu khí, hóa chất và năng lượng.

  • Có thể duy trì độ bền ngay cả ở độ dày tối thiểu289.

  • Khả năng chống ăn mòn đặc biệt, đặc biệt là chống lại các hóa chất và axit mạnh.

  • Giữ nguyên tính toàn vẹn của cấu trúc dưới áp suất và nhiệt độ cao.

  • Tương thích sinh học và không độc hại, phù hợp với các ứng dụng chuyên dụng.

  • Yêu cầu bảo trì ít hơn và có nhiệt độ nóng chảy cao so với thép và nhôm.

  • Được sử dụng ở những nơi có khả năng chống ăn mòn và độ bền là tối quan trọng168.

  • Khả năng chống ăn mòn, oxy hóa và thấm cacbon tuyệt vời.

  • Thích hợp cho môi trường thù địch và các ứng dụng nhiệt độ cao.

  • Cung cấp bảo vệ chống lại sự giãn nở nhiệt.

  • Bền và đáng tin cậy để sử dụng lâu dài trong điều kiện khắc nghiệt168.

  • Cung cấp độ bền kéo tốt từ 70 đến 700 MPa.

  • Nhẹ và tiết kiệm chi phí so với các kim loại khác.

  • Có hệ số giãn nở nhiệt cao hơn.

  • Được sử dụng ở những nơi quan trọng để tiết kiệm trọng lượng, mặc dù ít phổ biến hơn trong các ứng dụng áp suất rất cao18.

 (ví dụ: sợi carbon, sợi thủy tinh)

  • Được sử dụng cho bình chịu áp lực nhẹ.

  • Thường được áp dụng trong các ứng dụng chuyên biệt hoặc thích hợp, nơi giảm trọng lượng là rất quan trọng2.

Trong các dự án EPC, bình chịu áp lực được thiết kế, mua sắm và xây dựng để đáp ứng các nhu cầu công nghiệp cụ thể. Ứng dụng của họ trải dài trên nhiều lĩnh vực:

  • :
    Được sử dụng để lưu trữ và vận chuyển dầu thô, khí đốt tự nhiên và các sản phẩm dầu mỏ. Tàu phải chịu được áp suất cao và hydrocacbon ăn mòn trong quá trình thăm dò, sản xuất và tinh chế
    379.

  • :
    Tàu được thiết kế để phản ứng hóa học, chưng cất và lưu trữ hóa chất ăn mòn ở nhiệt độ cao. Các vật liệu như thép không gỉ và hợp kim được ưa chuộng để chống ăn mòn
    37.

  • :
    Được sử dụng trong các quy trình như thanh trùng, tiệt trùng và lên men để duy trì chất lượng và an toàn của sản phẩm. Thép không gỉ thường được sử dụng do đặc tính vệ sinh của nó
    3.

  • :
    Bình áp lực đảm bảo sản xuất thuốc và vắc-xin an toàn, yêu cầu tuân thủ các tiêu chuẩn quy định nghiêm ngặt và thường sử dụng thép không gỉ hoặc hợp kim chuyên dụng
    3.

  • :
    Tàu lưu trữ nhiên liệu và khí, được thiết kế để xử lý áp suất và nhiệt độ khắc nghiệt gặp phải trong quá trình bay
    37.

  • :
    Các nhà thầu EPC chế tạo nhiều loại bình áp lực khác nhau như meter provers, bể chuyển, bể bọc kép và máy khử khí. Các dự án này liên quan đến chế tạo chuyên nghiệp, bảo vệ chống ăn mòn, cán và kiểm soát chất lượng nội bộ để giao tàu đúng thời hạn và trong phạm vi ngân sách
    4.

Vật liệu Thuộc tính chính Các ứng dụng EPC điển hình
Thép không gỉ Chống ăn mòn, bền, có thể hàn Hóa chất, dược phẩm, thực phẩm và đồ uống, dầu khí
Thép cacbon Mạnh mẽ, tiết kiệm chi phí, chống rung Dầu khí, hóa chất, năng lượng
Titan Chống ăn mòn, độ bền cao, tương thích sinh học Hóa chất, hàng không vũ trụ, tàu chuyên dùng
Hợp kim niken Chống ăn mòn và oxy hóa, bền Môi trường hóa chất khắc nghiệt, nhiệt độ cao
Nhốm Trọng lượng nhẹ, độ bền kéo tốt Tàu nhẹ, một số ứng dụng hóa chất và thực phẩm
Composite Trọng lượng nhẹ, chống ăn mòn Tàu nhẹ chuyên dụng

Những vật liệu này được lựa chọn trong các dự án EPC dựa trên áp suất hoạt động, nhiệt độ, tiếp xúc với hóa chất, hạn chế chi phí và các tiêu chuẩn an toàn như mã ASME để đảm bảo hoạt động bình chịu áp lực đáng tin cậy và an toàn25.

Tóm lại, thép không gỉ, thép cacbon, titan, hợp kim niken và nhôm là những vật liệu phổ biến nhất được sử dụng trong chế tạo bình chịu áp lực, mỗi loại phù hợp với các yêu cầu công nghiệp cụ thể và các ứng dụng EPC trong các lĩnh vực dầu khí, hóa chất, dược phẩm, thực phẩm và đồ uống và hàng không vũ trụ.

 

🚨 Việc lựa chọn vật liệu ĐÚNG có thể tạo nên hoặc phá vỡ bình chịu áp suất của bạn!

Trong các dự án EPC trong lĩnh vực Dầu khí, bình chịu áp suất phải chịu được:
🔥 Áp suất và nhiệt độ cao
🌊 Môi trường có tính ăn mòn cao
💣 Hydro sunfua (H₂S) và clorua
❄️ Điều kiện cực kỳ khắc nghiệt

✅ Việc lựa chọn vật liệu không chỉ là một mặt hàng thông số kỹ thuật — mà còn là yếu tố cốt lõi đối với hiệu suất, sự an toàn và chi phí vòng đời.

📚 Thông tin chuyên môn từ ASME Mục II và kinh nghiệm thực tế trong dự án:

🔧 Các vật liệu phổ biến nhất được sử dụng trong chế tạo bình chịu áp suất và các ứng dụng EPC của chúng:

🔹 SA-516 Gr 70 – Thép cacbon:
Tiết kiệm chi phí; được sử dụng trong bình chứa khí và bể chứa tiện ích.
💡 Phổ biến trong các nhà máy chế biến và cơ sở lưu trữ.

🔹 SA-387 Gr 11/22 – Thép hợp kim thấp:
Xử lý nhiệt độ cao; được sử dụng trong lò phản ứng và bộ tách khí.
🔥 Thích hợp cho lò hơi và lò gia nhiệt lại.

🔹 316L – Thép không gỉ:
Khả năng chống ăn mòn tuyệt vời; lý tưởng cho các hệ thống hóa chất và nước.
🧪 Được sử dụng trong các đơn vị tinh chế và xử lý.

🔹 Duplex SS 2205 – Thép không gỉ Duplex:
Lý tưởng cho các bộ tách ngoài khơi trong môi trường giàu H₂S và clorua.
⚠️ Được ưa chuộng trong các giàn khoan ngoài khơi và trạm xăng.

🔹 Inconel 625 / Monel 400 – Hợp kim niken:
Dành cho dịch vụ chua, các đơn vị amin và bộ trao đổi nhiệt quan trọng.
🧬 Tuyệt vời cho khí axit và phun hóa chất.

🔹 Nhôm 5083 – Nhôm:
Được sử dụng trong các bể chứa LNG cho điều kiện nhiệt độ thấp.
❄️ Được tìm thấy trong các nhà máy hóa lỏng và lưu trữ.

🔹 FRP / GRP – Vật liệu composite:
Chống ăn mòn, nhẹ; được sử dụng trong các bể chứa axit và nước thải.
♻️ Tuyệt vời cho các hệ thống xử lý môi trường.

🔹 Titan Gr 2 – Titan:
Lựa chọn cao cấp cho quá trình khử muối và phun hóa chất dưới biển.
⚙️ Bền và lâu dài trong môi trường khắc nghiệt.

✅ Tiêu chuẩn áp dụng:
✔️ ASME Mục II & VIII
✔️ NACE MR0175 (cho dịch vụ chua)
✔️ API 650 / 620
✔️ ISO 14692 (cho vật liệu phi kim loại)

🔍 Ứng dụng vật liệu theo loại dự án:

🔸 Dự án trên bờ (Nhà máy lọc dầu, Nhà ga):
💰 Thép cacbon để lưu trữ tiết kiệm
🧪 Thép không gỉ hoặc FRP cho bồn chứa hóa chất
🔥 Thép hợp kim thấp cho bộ tách và bộ gia nhiệt lại

🔸 Nền tảng ngoài khơi (FPSO, Đầu giếng, Dưới biển):
🌊 Thép không gỉ hai lớp, hợp kim niken và titan cho môi trường biển giàu H₂S
💣 Inconel và Monel cho bình phun MEG và bình hấp thụ khí

🔸 Nhà máy LNG và Dịch vụ đông lạnh:
❄️ Hợp kim nhôm và niken để lưu trữ LNG và hóa hơi

🔸 Đơn vị xử lý hydrocarbon:
⚗️ Thép hợp kim thấp cho lò phản ứng và cột
🧪 Hastelloy và 316L cho các dịch vụ axit và siêu tinh khiết

🔔 Biên soạn bởi: PIPE LINE DZ bybattaztarek Krishna Nand Ojha, PMP® và cố vấn của ông là Govind Tiwari, Tiến sĩ qua LinkedIn.

#PressureVessels #ASME #MaterialSel

Bình chịu áp lực, ASME, Lựa chọn Vật liệu

(St.)
Kỹ thuật

Hồ sơ đánh giá quy trình hàn (WPQR)

107

Hồ sơ đánh giá quy trình hàn (WPQR)

Nguồn
HMS
Chất lượng quy trình hàn – WPQR, BPQR – HMS
Giải thích thuật ngữ quy trình hàn (WPS), PQR, WPQR – DGwelding
Axxair
WPS và WPQR: đặc điểm kỹ thuật và trình độ của quy trình hàn
Công ty TNHH Prebecc
Điều khoản quy trình hàn (WPS, PQR, WPQR) – Prebecc

Hồ sơ đánh giá quy trình hàn (WPQR) là một hồ sơ được lập tài liệu chính thức xác nhận quy trình hàn bằng cách xác nhận rằng quá trình hàn tạo ra mối hàn lành mạnh và có thể chấp nhận được đáp ứng các tiêu chuẩn cơ khí và luyện kim bắt buộc. Nó là bằng chứng cho thấy một cơ sở sản xuất có các kỹ năng và kiến thức cần thiết để tạo ra các mối hàn thích hợp trong các điều kiện cụ thể.

WPQR là gì?

  • WPQR là một tài liệu ghi lại các biến hàn được sử dụng để tạo ra mối hàn thử nghiệm có thể chấp nhận được cùng với kết quả của các thử nghiệm được thực hiện trên mối hàn đó để đủ điều kiện Đặc điểm kỹ thuật quy trình hàn (WPS)135.

  • Nó xác nhận rằng quy trình hàn có thể tạo ra các mối hàn đáp ứng các yêu cầu về chất lượng và mã, bao gồm các tính chất cơ học và đặc tính luyện kim46.

  • WPQR là điều cần thiết trước khi bắt đầu hàn sản xuất để đảm bảo độ lặp lại và chất lượng nhất quán3.

Tổng quan về quy trình WPQR

  1. Chuẩn bị mối hàn thử nghiệm: Mối nối thử nghiệm được thực hiện dựa trên Đặc điểm kỹ thuật quy trình hàn sơ bộ (pWPS) mô phỏng các điều kiện sản xuất thực tế. Đối với hàn ống, vị trí 6G (ống nghiêng 45 độ) thường được sử dụng để xác nhận tất cả các vị trí ngoại trừ hàn dọc xuống15.

  2. Kiểm tra mối hàn: Mối hàn thử nghiệm trải qua cả thử nghiệm phá hủy và không phá hủy (NDT và DT), chẳng hạn như kiểm tra trực quan, chụp X quang, thử nghiệm uốn cong, thử nghiệm độ bền kéo, thử nghiệm độ cứng và thử nghiệm khắc vĩ mô, để xác minh chất lượng mối hàn167.

  3. Tài liệu và phê duyệt: Sau khi thử nghiệm thành công, tài liệu WPQR được hoàn thành, chỉ định phạm vi các biến số và điều kiện mà quy trình hàn đủ điều kiện. Bản ghi này sau đó được sử dụng để tạo hoặc hoàn thiện WPS, hướng dẫn hàn sản xuất146.

  4. Trình độ thợ hàn: Thợ hàn phải đủ điều kiện để thực hiện mối hàn theo WPQR và WPS đã được phê duyệt. Thợ hàn vượt qua bài kiểm tra quy trình sẽ tự động được phê duyệt, nhưng các thợ hàn bổ sung phải vượt qua các bài kiểm tra phê duyệt theo các tiêu chuẩn liên quan (ví dụ: ISO 9606 hoặc ASME Phần IX)136.

Mối quan hệ giữa WPQR, WPS và PQR

  • WPS (Đặc điểm kỹ thuật quy trình hàn): Một tài liệu phác thảo cách hàn nên được thực hiện trong quá trình sản xuất, bao gồm các thông số như dòng điện, điện áp, vật liệu và vị trí hàn34.

  • PQR (Hồ sơ đánh giá thủ tục): Hồ sơ kết quả thử nghiệm hàn thực tế chứng minh rằng quy trình hàn tạo ra các mối hàn có thể chấp nhận được. Nó hỗ trợ WPS46.

  • WPQR: Đôi khi được sử dụng thay thế cho PQR, nhưng thường đề cập đến bản ghi chính thức của các biến hàn và kết quả thử nghiệm đủ điều kiện cho quy trình hàn và cho phép tạo ra WPS156.

Tóm tắt

WPQR là một tài liệu quan trọng trong đảm bảo chất lượng hàn chứng nhận quy trình hàn bằng cách ghi lại các thông số hàn và kết quả thử nghiệm của mối hàn thử nghiệm đủ tiêu chuẩn. Nó đảm bảo rằng các mối hàn được sản xuất theo quy trình được chỉ định sẽ đáp ứng các tiêu chuẩn và mức chất lượng bắt buộc. WPQR là nền tảng để tạo ra Đặc điểm kỹ thuật quy trình hàn (WPS) hướng dẫn hàn sản xuất và cho các thợ hàn đủ điều kiện thực hiện mối hàn theo quy trình đó.

Quá trình này liên quan đến việc thực hiện các mối hàn thử nghiệm, thực hiện thử nghiệm nghiêm ngặt, ghi lại kết quả và phê duyệt quy trình và nhân sự để duy trì mối hàn nhất quán, chất lượng cao trong môi trường sản xuất hoặc xây dựng13467.

Làm thế nào để phát triển Hồ sơ chứng nhận quy trình hàn (WPQR)? 🔥

Phát triển Hồ sơ chứng nhận quy trình hàn (WPQR) là một quy trình quan trọng đảm bảo các mối hàn được tạo ra tại hiện trường hoặc trong xưởng đáp ứng các yêu cầu nghiêm ngặt về chất lượng, an toàn và tuân thủ. Đây là nền tảng mà trên đó Quy cách quy trình hàn (WPS) được thiết lập.

🎯 Các bước toàn diện để phát triển WPQR:

➤Chọn quy trình hàn (SMAW, GTAW, GMAW, FCAW, v.v.)
➤Xác định loại hàn (Thủ công, Bán tự động, Tự động)
➤Chọn vật liệu cơ bản (Thông số kỹ thuật vật liệu, số P, số nhóm, phạm vi độ dày)
➤Chọn vật liệu hàn (Thông số kỹ thuật, phân loại, kích thước)
➤Đặt vị trí hàn (Phẳng, Ngang, Dọc, Trên cao)
➤Thiết lập nhiệt độ làm nóng trước và nhiệt độ giữa các lần hàn (theo quy định)
➤Quyết định về PWHT (nếu cần) (Nhiệt độ, thời gian giữ, tốc độ làm mát)
➤Thiết kế cấu hình mối nối (Loại, chuẩn bị, lớp lót, v.v.)
➤Cố định các thông số điện (Loại dòng điện, cực tính, điện áp, phạm vi ampe)
➤Xác định loại khí bảo vệ và tốc độ dòng chảy (cho GTAW/GMAW/FCAW)
➤Ghi lại tốc độ di chuyển và số lần đi qua
➤Thực hiện hàn trên Phiếu kiểm tra (trong điều kiện được kiểm soát)
➤Tiến hành các thử nghiệm phá hủy và không phá hủy (Độ bền kéo, Độ uốn, Độ va đập, Độ cứng, Độ vĩ mô)
➤Ghi lại kết quả và so sánh với Tiêu chí chấp nhận (theo quy định)

⚠️ Những thách thức trong việc phát triển WPQR:

-Diễn giải các quy định quốc tế phức tạp (ASME, ISO, AWS) 📚
-Quản lý các biến số hàn thiết yếu và không thiết yếu 🎛️
-Đảm bảo kiểm soát chính xác các thông số hàn trong quá trình thẩm định
-Phối hợp các thử nghiệm phá hủy và không phá hủy trong thời hạn của dự án 🕒
-Duy trì tài liệu có thể truy xuất nguồn gốc, sẵn sàng để kiểm toán 📝

🚀 Những điểm chính:

-Luôn bắt đầu bằng việc hiểu rõ về quy định và yêu cầu của khách hàng.
-Mọi biến số thiết yếu đều quan trọng — hãy ghi lại chính xác.
– Các bài kiểm tra trình độ phải phản ánh các điều kiện hàn sản xuất thực tế.
– Hợp tác chặt chẽ với thợ hàn, thanh tra viên và phòng thử nghiệm có trình độ.
– Sử dụng WPQR của bạn như một bản thiết kế để kiểm soát chất lượng hàn dài hạn.

💡 Mẹo chuyên nghiệp:

WPQR của bạn không chỉ là một tệp — đó là hộ chiếu chất lượng hàn của bạn. Hãy phát triển nó một cách siêng năng và bạn sẽ tránh được việc phải làm lại, không tuân thủ và chậm trễ dự án.

Govind Tiwari,PhD.
#WeldingEngineering #WPQR #WPS #PQR #WeldingQuality #ASME #WeldingStandards #GovindTiwariPhD

Kỹ thuật hàn, WPQR, WPS, PQR, Chất lượng hàn, ASME, Tiêu chuẩn hàn
(St.)
Kỹ thuật

Mã ASME bạn nên biết

95

🔩 Mã ASME bạn nên biết:
Cho dù bạn đang thiết kế hệ thống đường ống hay đang xem xét thông số kỹ thuật của bình chịu áp suất, các tiêu chuẩn ASME là nền tảng cho việc sử dụng mặt bích an toàn và đáng tin cậy. Sau đây là phân tích về các mã liên quan nhất và vai trò của chúng:

🔧 1. Dòng ASME B16 – Tiêu chuẩn mặt bích
Xác định kích thước, định mức áp suất và vật liệu:
• B16.5 – Mặt bích ống (½”–24”)
• B16.47 – Mặt bích đường kính lớn (26”–60”)
• B16.36 – Mặt bích lỗ để đo lưu lượng
• B16.48 – Phôi đường ống (tháp, rèm che)
• B16.1 – Mặt bích gang (áp suất thấp)

📐 2. Dòng ASME B31 – Mã thiết kế đường ống
Bao gồm thiết kế cơ khí và tính toàn vẹn ứng suất của mặt bích:
• B31.3 – Đường ống xử lý (chìa khóa cho dầu khí)
• B31.4 – Đường ống chất lỏng/khí/bùn
• B31.8 – Truyền tải và phân phối khí
• B31.1 – Đường ống dẫn điện (hệ thống hơi nước, nhiệt)

🛢 3. ASME Mục VIII – Bình chịu áp suất
• Phân khu 1 – Thiết kế theo quy tắc (áp suất thấp/trung bình)
• Phân khu 2 – Thiết kế theo phân tích (ứng dụng quan trọng)
• Phân khu 3 – Bình chịu áp suất cao

🧱 4. ASME Mục II – Vật liệu
• Phần A/B – Vật liệu sắt và không sắt
• Phần C – Vật tư hàn
• Phần D – Tính chất thiết kế cơ học

🧑‍🏭 5. ASME Mục IX – Tiêu chuẩn hàn
• WPS, PQR – Tiêu chuẩn quy trình hàn mặt bích
• WPQ – Tiêu chuẩn hiệu suất thợ hàn

✅ Việc hiểu các quy tắc này rất quan trọng để đảm bảo hiệu suất, độ an toàn và sự tuân thủ của mặt bích trong các hệ thống dầu khí.

 #ASME #OilAndGas #MechanicalEngineering #PipingDesign #PressureVessels #Flanges #Standards #ProcessPiping #Welding

ASME, Dầu khí, Kỹ thuật cơ khí, Thiết kế đường ống, Bình áp suất, Mặt bích, Tiêu chuẩn, Đường ống quy trình, Hàn
(St.)
Kỹ thuật

Thuật ngữ áp suất trong ASME BPVC

92

Thuật ngữ áp suất trong ASME BPVC

Nguồn
Asme
Mã nồi hơi và bình chịu áp lực ASME (BPVC)
Linkedin
Các thuật ngữ áp suất trong ASME BPVC Phần VIII Mục 1 1. Thiết kế…
Mã nồi hơi và bình chịu áp lực ASME – Wikipedia tiếng Việt
Công ty TNHH Prebecc
Mã nồi hơi và bình chịu áp lực ASME – BPVC – Prebecc

Bộ luật nồi hơi và bình chịu áp lực ASME (BPVC) xác định và sử dụng một số thuật ngữ quan trọng liên quan đến áp suất cần thiết cho việc thiết kế, xây dựng và vận hành bình chịu áp lực. Các thuật ngữ này chủ yếu được nêu trong ASME BPVC Phần VIII, Phần 1, điều chỉnh việc xây dựng bình chịu áp lực. Dưới đây là thuật ngữ áp suất chính được sử dụng trong ASME BPVC:

Các thuật ngữ áp suất chính trong ASME BPVC

1. Áp suất thiết kế

  • Áp suất đo được sử dụng làm đường cơ sở cho thiết kế tàu.

  • Nó chiếm sự kết hợp nghiêm trọng nhất giữa áp suất và nhiệt độ dự kiến trong quá trình hoạt động, bao gồm cả đầu tĩnh từ vị trí vận hành.

  • Áp suất thiết kế được đặt cao hơn áp suất vận hành bình thường để cung cấp biên độ an toàn.

  • Đây là giá trị áp suất cơ bản được sử dụng trong tính toán độ dày của tường, độ bền vật liệu và cốt thép2.

2. Áp suất làm việc tối đa cho phép (MAWP)

  • Áp suất tối đa cho phép ở đỉnh tàu ở vị trí hoạt động bình thường của nó.

  • Được tính toán dựa trên độ dày thực tế (không bao gồm phụ cấp ăn mòn), tính chất vật liệu (ứng suất cho phép) và cân nhắc nhiệt độ.

  • MAWP thường bằng hoặc lớn hơn Áp suất thiết kế và đại diện cho giới hạn áp suất trong điều kiện hoạt động bình thường.

  • Nếu các tính toán chi tiết không được thực hiện, MAWP có thể mặc định là Áp suất thiết kế theo ASME BPVC Sec VIII Div.12.

3. Áp suất tối đa cho phép (MAP) hoặc MAPnc (điều kiện mới và lạnh)

  • Áp suất tối đa mà một bình có thể xử lý trong điều kiện mới và lạnh.

  • Không giống như MAWP, MAP không tính đến hiệu ứng nhiệt độ hoặc phụ cấp ăn mòn.

  • MAP thường bằng hoặc lớn hơn MAWP và đại diện cho giới hạn áp suất cao nhất cho tàu ở trạng thái ban đầu2.

4. Áp suất hoạt động

  • Áp suất thực tế mà tàu thường hoạt động trong điều kiện bình thường.

  • Áp suất vận hành thường thấp hơn nhiều so với Áp suất thiết kế để duy trì biên độ an toàn2.

Bối cảnh bổ sung

  • ASME BPVC định nghĩa bình chịu áp lực là một thùng chứa được thiết kế để chứa khí hoặc chất lỏng ở áp suất khác biệt đáng kể so với áp suất môi trường xung quanh, thường trên 15 psig và có cân nhắc về thể tích (lớn hơn 1.5 feet khối)5.

  • Bộ quy tắc cung cấp các quy tắc cho các phương pháp thiết kế theo quy tắc (DBR) và thiết kế theo phân tích (DBA), trong đó các thuật ngữ áp suất là đầu vào cơ bản cho các tính toán và phân tích ứng suất4.

  • BPVC là một tiêu chuẩn toàn diện bao gồm các thông số kỹ thuật vật liệu, các yêu cầu chế tạo, kiểm tra và thử nghiệm để đảm bảo an toàn và độ tin cậy của bình chịu áp lực trên toàn thế giới13.

Các điều khoản áp suất này tạo cơ sở để đảm bảo rằng các bình chịu áp lực được thiết kế và vận hành an toàn trong giới hạn dự kiến, ngăn ngừa hỏng hóc và tai nạn.

Bảng tóm tắt các thuật ngữ áp suất

Thời hạn Định nghĩa Ghi chú
Áp lực thiết kế Cơ sở áp suất đo cho thiết kế, bao gồm nhiệt độ và đầu tĩnh Đường cơ sở cho tất cả các tính toán thiết kế
Áp suất làm việc tối đa cho phép (MAWP) Áp suất tối đa cho phép ở đỉnh tàu ở vị trí bình thường, xem xét độ dày và vật liệu ≥ Áp suất thiết kế, giới hạn hoạt động bình thường
Áp suất tối đa cho phép (MAP) / MAPnc Áp suất tối đa trong điều kiện mới và lạnh, không có nhiệt độ hoặc phụ cấp ăn mòn ≥ MAWP, giới hạn áp suất ban đầu cao nhất
Áp suất hoạt động Áp suất thực tế trong quá trình hoạt động bình thường Áp lực thiết kế bên dưới cho biên độ an toàn

Thuật ngữ này rất quan trọng đối với các kỹ sư và thanh tra làm việc với bình chịu áp lực tuân thủ ASME BPVC để đảm bảo tuân thủ và an toàn25.


Tham khảo:
1 Mã nồi hơi và bình chịu áp lực ASME (BPVC) – ASME
2 Các điều khoản áp suất trong ASME BPVC Phần VIII Fiv. 1 – LinkedIn
3 Mã nồi hơi và bình chịu áp lực ASME – Wikipedia tiếng Việt
4 Mã nồi hơi và bình áp lực ASME – Prebecc
5 Yêu cầu và phân loại bình áp lực ASME – Red River

⁉️⁉️Hiểu thuật ngữ áp suất trong ASME BPVC – Điều bắt buộc đối với mọi kỹ sư cơ khí⁉️⁉️⁉️
Trong thiết kế và kiểm tra bình chịu áp suất, độ chính xác của thuật ngữ là rất quan trọng. ASME BPVC (Quy tắc nồi hơi và bình chịu áp suất) định nghĩa một số giới hạn áp suất chính, mỗi giới hạn phục vụ cho một mục đích thiết kế, an toàn và vận hành cụ thể. Sau đây là phân tích chi tiết:

1. Áp suất vận hành:
Đây là áp suất bên trong bình trong quá trình vận hành bình thường. Áp suất này không được vượt quá Áp suất thiết kế hoặc MAWP. Đây là áp suất thực tế dự kiến ​​trong dịch vụ hàng ngày.

2. Áp suất thiết kế:
Áp suất được sử dụng làm cơ sở cho các tính toán thiết kế. Nó bao gồm các cân nhắc về nhiệt độ trùng hợp, biến động quy trình và kỳ vọng vận hành. Áp suất thiết kế thường cao hơn Áp suất vận hành để tính đến các điều kiện xấu nhất.

3. MAWP (Áp suất làm việc tối đa cho phép):
Đây là áp suất tối đa mà bình có thể chịu được một cách an toàn ở phía trên bình theo hướng và nhiệt độ được chỉ định. Nó được tính toán bằng cách sử dụng độ dày vật liệu thực tế, không bao gồm phụ cấp ăn mòn, theo UG-98 của ASME BPVC.

4. MAP (Áp suất tối đa cho phép):
Còn được gọi là MAPnc (không ăn mòn), điều này đề cập đến áp suất tối đa lý thuyết mà bình có thể giữ trong điều kiện mới và lạnh. Nó không tính đến các biến động nhiệt độ hoặc ăn mòn—do đó không được sử dụng cho các giới hạn vận hành mà là đánh giá lý thuyết.

Thông tin chi tiết quan trọng:

MAWP có thể bằng hoặc lớn hơn Áp suất thiết kế nhưng thường bảo thủ hơn khi xem xét các điều kiện vật liệu thực tế. Nó tạo thành nền tảng của biên độ an toàn trong kỹ thuật bình chịu áp suất.

Kỹ sư phải đảm bảo:

Áp suất vận hành ≤ Áp suất thiết kế ≤ MAWP ≤ MAPnc

Tất cả các giá trị đều phù hợp với các tính toán và giả định thiết kế của UG-98

#ASME #BPVC #PressureVessels #MechanicalEngineering #DesignPressure #MAWP #OperatingPressure #EngineeringStandards #UG98 #SafetyMargins

ASME, BPVC, Bình áp suất, Kỹ thuật cơ khí, Thiết kế áp suất, MAWP, Áp suất vận hành, Tiêu chuẩn kỹ thuật, UG 98, Biên độ an toàn

(St.)
Kỹ thuật

ISO 6520-1:2007 – Hàn và các quy trình liên quan

330

Tiêu chuẩn ISO 6520-1

Nguồn
ISO
ISO 6520-1:2007 – Hàn và các quy trình liên quan
Hệ thống pháp luật Việt Nam – hethongphapluat.com
Tiêu chuẩn quốc gia tcvn 6115-1:2015 (iso 6520-1:2007) về hàn và …
Tiêu chuẩn quốc gia TCVN 6115-1:2015 (ISO 6520-1:2007) về Hàn …
tieuchuanxaydung.vsqi.gov
Tiêu chuẩn: EN ISO 6520-1 – Welding and associated processes

ISO 6520-1 là tiêu chuẩn quốc tế có tiêu đề “Hàn và các quy trình liên quan – Phân loại các khuyết điểm hình học trong vật liệu kim loại – Phần 1: Hàn nóng chảy”. Phiên bản hợp lệ hiện tại là ISO 6520-1:2007, thay thế phiên bản năm 1998 trước đó. Tiêu chuẩn này cung cấp một hệ thống phân loại và mô tả chính xác cho các khuyết điểm mối hàn đặc biệt liên quan đến quy trình hàn nhiệt hạch16.

Những điểm chính về ISO 6520-1:2007 bao gồm:

  • Nó đóng vai trò là cơ sở để phân loại và mô tả chính xác các khuyết điểm hình học trong mối hàn kim loại.

  • Các loại khuyết điểm được xác định rõ ràng, với các giải thích và minh họa để tránh nhầm lẫn.

  • Tiêu chuẩn này loại trừ các khuyết điểm luyện kim, chỉ tập trung vào các khuyết tật mối hàn hình học.

  • Nó phân loại các khuyết điểm thành sáu nhóm chính: vết nứt, độ xốp (khoảng trống), tạp chất rắn, thiếu hợp nhất và thiếu sự thâm nhập, các khuyết tật hình dạng và kích thước, và các khuyết tật khác2.

  • Tiêu chuẩn sử dụng hệ thống tham chiếu số để xác định và phân loại những khiếm khuyết này.

  • ISO 6520-1:2007 hài hòa với các tiêu chuẩn quốc gia như TCVN 6115-1:2015 của Việt Nam, hoàn toàn tương đương ngoại trừ những thay đổi về biên tập27.

  • Có một hệ thống liên quan để chỉ định các khuyết điểm theo ISO/TS 17845, với các bảng tương ứng được cung cấp giữa hai hệ thống12.

Tiêu chuẩn được duy trì bởi Ủy ban Kỹ thuật ISO / TC 44 / SC 7, liên quan đến hàn và các quy trình liên quan, và nó được xem xét năm năm một lần để đảm bảo tính phù hợp1.

Tóm lại, ISO 6520-1: 2007 là tiêu chuẩn quan trọng được sử dụng trên toàn thế giới để phân loại và mô tả rõ ràng các khuyết điểm hình học được tìm thấy trong mối hàn nhiệt hạch, hỗ trợ kiểm soát chất lượng và giao tiếp trong ngành hàn.

Tham khảo:

  • Mô tả chính thức của ISO 6520-1: 20071

  • Chi tiết tương đương Việt Nam TCVN 6115-1:201527

  • Rút lại ấn bản năm 1998 và thay thế bởi ấn bản năm 2007

‼️ CÁC VẾT NỨT NÓNG trong hàn: Các mối đe dọa tiềm ẩn trong quá trình đông đặc ‼️
Các vết nứt nóng—còn được gọi là vết nứt đông đặc—có thể âm thầm làm giảm tính toàn vẹn về mặt cấu trúc của mối hàn, ngay cả khi bề mặt có vẻ hoàn hảo.

Định nghĩa:
Một vết nứt nóng hình thành trong giai đoạn đông đặc của kim loại hàn. Lỗi này có thể xuất hiện dưới nhiều dạng khác nhau, bao gồm:

– Nứt hố

– Nứt hình quả lê

– Nứt đường tâm dọc

– Nứt do lưu huỳnh gây ra

Nguyên nhân phổ biến:

1. Cường độ dòng điện hàn quá mức

2. Hình dạng rãnh hàn hẹp

3. Hàm lượng lưu huỳnh cao hoặc phân tách trong kim loại nền

Biện pháp phòng ngừa:

– Áp dụng cường độ dòng điện thích hợp và xử lý cẩn thận các hố

– Thiết kế các rãnh với góc và chiều rộng thích hợp

– Kiểm tra kim loại nền xem có phân tách lưu huỳnh trước khi hàn không

Phân tích hình ảnh:

Trên cùng bên trái: Nứt hố trong SMAW—thường gặp ở giai đoạn kết thúc hồ quang do lấp đầy hố kém

Trên cùng bên phải: Nứt hình quả lê trong SAW—hình thành từ ứng suất đông đặc theo hướng

Dưới cùng bên trái: Nứt dọc—chạy song song với mối hàn, thường gặp ở các rãnh hẹp

Dưới cùng bên phải: Nứt lưu huỳnh—do sự phân tách giàu lưu huỳnh trong vũng hàn

Thông tin chuyên sâu về kỹ thuật:
Các vết nứt nóng hiếm khi nhìn thấy được bằng mắt thường mắt cho đến khi chúng lan truyền dưới ứng suất. Các tiêu chuẩn như ASME Mục IX và ISO 6520-1 phân loại những khuyết tật này là khuyết tật nghiêm trọng do khả năng gây ra hỏng hóc thảm khốc dưới tải trọng tuần hoàn hoặc tải trọng động.

#HotCrack #WeldingDefects #WeldInspection #SolidificationCrack #SMAW #SAW #WeldingQuality #CraterCrack #PearShapeCrack #SulfurCrack #WeldingEngineering #ASME #ISO6520 #NonDestructiveTesting

Nứt nóng, Khuyết tật hàn, Kiểm tra mối hàn, Nứt đông đặc, SMAW, SAW, Chất lượng hàn, Nứt hố, Nứt hình quả lê, Nứt lưu huỳnh, Kỹ thuật hàn, ASME, ISO 6520, Kiểm tra không phá hủy
(St.)
Kỹ thuật

Nhóm vật liệu ASME

207

Nhóm vật liệu ASME

Nguồn
Đường ống
Nhóm vật liệu của mặt bích ASME B16.5
twi-global.com
Hệ thống phân nhóm kim loại cơ bản – TWI
wermac.org
Nhóm vật liệu ASTM – Wermac.org
info.thinkcei.com
Bảng số hàn ASME – Cơ sở số P & chất độn số F

Hệ thống nhóm vật liệu ASME phân loại kim loại chủ yếu để đơn giản hóa trình độ quy trình hàn và đảm bảo khả năng tương thích dựa trên khả năng hàn, tính chất cơ học và thành phần.

Các yếu tố chính của nhóm vật liệu ASME

  • Số P (Số kim loại mẹ): Ký hiệu chữ và số này nhóm các kim loại cơ bản (chẳng hạn như ống và tấm) có đặc tính hàn tương tự để giảm số lượng trình độ quy trình hàn cần thiết. Các kim loại có cùng số P có thành phần, khả năng hàn và tính chất cơ học có thể so sánh được, mặc dù không giống nhau về mọi mặt25.

  • Số nhóm: Một phân chia thêm trong danh mục số P tinh chỉnh nhóm dựa trên các đặc tính vật liệu cụ thể hơn5.

  • Số F (Số kim loại phụ): Phân loại này áp dụng cho kim loại phụ (điện cực, thanh) và được sử dụng cùng với số P để đảm bảo khả năng tương thích giữa kim loại cơ bản và kim loại phụ trong quá trình hàn245.

  • Số A: Một phân loại kim loại phụ khác liên quan đến các loại điện cực hoặc thanh cụ thể5.

Mục đích và sử dụng

Hệ thống nhóm được thiết kế để giảm thời gian và chi phí liên quan đến chứng chỉ quy trình hàn (PQR) bằng cách cho phép một chứng chỉ duy nhất bao gồm nhiều vật liệu trong cùng một nhóm. Hệ thống này được hệ thống hóa trong ASME Phần IX và được sử dụng rộng rãi trong các quy tắc xây dựng bình chịu áp lực và đường ống25.

Ví dụ về nhóm

  • Thép mangan carbon được gán P-Number 1 với một số nhóm dưới nó4.

  • Thép không gỉ Austenit có số P với các nhóm con như Nhóm 1 (Lớp 304, 316, 317, 347) và Nhóm 2 (Lớp 309, 310)8.

  • Các nhóm khác bao gồm các loại thép hợp kim, thép không gỉ martensitic và thép crom-molypden, mỗi nhóm có số P và số nhóm riêng biệt47.

Tóm tắt

Phân loại Được chỉ định cho Mục đích Bảng tham khảo trong ASME IX
Số P Kim loại cơ bản Nhóm theo khả năng hàn và thành phần QW / QB-422
Số nhóm Kim loại cơ bản Phân chia trong nhóm số P QW / QB-422
Số F Kim loại phụ Nhóm kim loại phụ để tương thích QW-432 ·
Số A Kim loại phụ Phân loại kim loại phụ bổ sung QW-442 ·

Hệ thống này giúp hợp lý hóa trình độ hàn và đảm bảo mối hàn an toàn, đáng tin cậy trong thi công thiết bị áp lực245.

Tóm lại, nhóm vật liệu ASME sử dụng số P và số nhóm cho kim loại cơ bản và số F và số A cho kim loại phụ, phân loại vật liệu dựa trên khả năng hàn, thành phần và tính chất cơ học để tối ưu hóa quy trình hàn và duy trì các tiêu chuẩn an toàn.

Nhóm vật liệu ASME 🔥

Nhóm vật liệu ASME là một khái niệm cơ bản trong kỹ thuật, phân loại vật liệu dựa trên các đặc tính tương tự, đảm bảo an toàn, hiệu quả và tuân thủ trong nhiều ngành khác nhau. Cho dù bạn tham gia vào thiết kế, hàn, kiểm tra hay tuân thủ quy định, việc hiểu các nhóm này có thể giúp đơn giản hóa đáng kể công việc của bạn.

🚀 Mục đích
Mục đích chính của nhóm vật liệu ASME là chuẩn hóa các vật liệu có tính chất hóa học, cơ học và luyện kim tương tự nhau. Việc chuẩn hóa này giúp hợp lý hóa các tiêu chuẩn hàn, lựa chọn vật liệu, kiểm tra và đảm bảo tuân thủ các quy tắc ASME.

🔍 Cơ sở để nhóm

Vật liệu được nhóm dựa trên:
· Thành phần hóa học
· Tính chất cơ học như độ bền và độ dẻo
· Đặc tính khả năng hàn
· Phản ứng xử lý nhiệt
· Cấu trúc kim loại
· Điều kiện dịch vụ như áp suất và nhiệt độ
· Phù hợp với các yêu cầu của mã ASME

🎯 Lợi ích:

· Đơn giản hóa các tiêu chuẩn về quy trình hàn trên các vật liệu
· Tạo điều kiện lựa chọn vật liệu nhanh hơn và chính xác hơn
· Nâng cao hiệu quả kiểm tra với thử nghiệm tiêu chuẩn
· Đảm bảo tuân thủ mã nhất quán
· Cho phép hoán đổi, giảm chi phí và thời gian giao hàng
· Cải thiện tính an toàn và độ tin cậy trong vận hành

⚠️Thách thức:

· Các tính chất chồng chéo có thể làm cho việc nhóm trở nên phức tạp
· Sự khác biệt giữa các nhà cung cấp vật liệu có thể ảnh hưởng đến tính nhất quán
· Việc cập nhật các tiêu chuẩn ASME đang phát triển đòi hỏi phải học tập liên tục
· Áp dụng sai nhóm có thể dẫn đến hỏng hóc khi hàn hoặc dịch vụ

💡 Những điểm chính cần ghi nhớ:

· Việc nhóm vật liệu theo ASME rất cần thiết cho các hoạt động kỹ thuật an toàn và hiệu quả.
· Giảm thiểu sự dư thừa trong các nỗ lực hàn và kiểm tra.
· Hiểu đúng cách sẽ giảm thiểu rủi ro và đảm bảo tuân thủ quy định.

Govind Tiwari,PhD
#quality #qms #iso9001 #asme


(St.)
Kỹ thuật

WPS so với PQR so với WPQ

104

WPS so với PQR so với WPQ

Nguồn
Giải thích thuật ngữ quy trình hàn (WPS), PQR, WPQR – DGwelding
Kỹ thuật hàn
WPS, PQR và WPQ: Giải thích về từ viết tắt – Technoweld
“Điều hướng tài liệu hàn: WPS, PQR và WPQ …
Qualimet
Những điều bạn cần biết về WPS, PQR và WPQ | Qualimet

Dưới đây là so sánh và giải thích rõ ràng về WPS, PQR và WPQ trong hàn:

Định nghĩa và Mục đích

  • WPS (Đặc điểm kỹ thuật quy trình hàn)
    WPS là một tài liệu bằng văn bản quy định cách thực hiện hoạt động hàn. Nó bao gồm các chi tiết về vật liệu, thiết bị, kỹ thuật hàn và thông số để đảm bảo mối hàn nhất quán và chất lượng trong quá trình sản xuất. Nó đóng vai trò như một hướng dẫn cho thợ hàn và người giám sát tuân theo quy trình hàn tiêu chuẩn hóa
    2458.

  • PQR (Hồ sơ đủ điều kiện thủ tục)
    PQR là bản ghi chi tiết về thử nghiệm hàn thực tế được thực hiện để đủ điều kiện cho quy trình hàn. Nó ghi lại các thông số hàn chính xác và kết quả thử nghiệm (chẳng hạn như thử nghiệm cơ học) được sử dụng trong quá trình hàn chất lượng. PQR chứng minh rằng quy trình hàn tạo ra các mối hàn đáp ứng các tiêu chuẩn yêu cầu. Nó chứa các giá trị thực tế không có phạm vi và được sử dụng làm cơ sở để phát triển WPS
    245.

  • WPQ (Chứng chỉ thợ hàn)
    WPQ chứng nhận rằng thợ hàn đã chứng minh khả năng thực hiện hàn theo một quy trình cụ thể. Nó xác minh kỹ năng và khả năng của thợ hàn để tạo ra các mối hàn theo WPS. Chứng chỉ này là điều cần thiết để đảm bảo thợ hàn có thể đáp ứng các yêu cầu chất lượng một cách nhất quán
    345.

Mối quan hệ và quy trình làm việc

  1. PQR được tạo ra trước tiên bằng cách thực hiện mối hàn thử nghiệm và ghi lại tất cả các thông số và kết quả thử nghiệm.

  2. Dựa trên PQR, WPS được phát triển, chỉ định phạm vi chấp nhận được cho các biến hàn để hàn sản xuất.

  3. Sau đó, các thợ hàn cá nhân đủ điều kiện thông qua bài kiểm tra WPQ để đảm bảo họ có thể tuân theo WPS một cách chính xác.

Bảng tóm tắt

Tài liệu Mục đích Nội dung Vai trò
WPS (Đặc điểm kỹ thuật quy trình hàn) Chỉ định cách thực hiện hàn Thông số hàn, vật liệu, kỹ thuật, phạm vi Tài liệu xưởng hướng dẫn thợ hàn
PQR (Hồ sơ đủ điều kiện thủ tục) Ghi lại dữ liệu và kết quả mối hàn thử nghiệm thực tế Các thông số hàn chính xác và kết quả thử nghiệm Văn bản văn phòng chứng minh tính hợp lệ của thủ tục
WPQ (Chứng chỉ hiệu suất thợ hàn) Chứng nhận năng lực của thợ hàn Kết quả kiểm tra của thợ hàn sau WPS Xác nhận kỹ năng và trình độ thợ hàn

Các tài liệu này cùng nhau tạo thành một khung đảm bảo chất lượng toàn diện trong hàn, đảm bảo mối hàn đáp ứng tiêu chuẩn và thợ hàn có năng lực2345.

🔍 WPS so với PQR so với WPQ – Sự khác biệt là gì?
Trong thế giới hàn, chất lượng không chỉ xảy ra mà còn được lên kế hoạch, ghi chép và xác minh. Đó là nơi WPS, PQR và WPQ phát huy tác dụng. Các tài liệu này tạo thành xương sống của quản lý chất lượng hàn, đảm bảo tính nhất quán, an toàn và tuân thủ các quy tắc của ngành như ASME, AWS, API và ISO.

Sau đây là phân tích chi tiết:
📘 WPS – Đặc tả quy trình hàn
🛠️ WPS là gì:
Một tờ hướng dẫn chi tiết, được viết ra, mô tả cách hàn được thực hiện trên sàn xưởng hoặc tại công trường.
📋 Bao gồm:
🔹Quy trình hàn (ví dụ: SMAW, GTAW, FCAW, SAW)
🔹Thông số kỹ thuật của kim loại cơ bản và kim loại phụ
🔹Thiết kế mối hàn và chi tiết lắp đặt
🔹Vị trí hàn (1G, 2G, 6G, v.v.)
🔹Làm nóng trước và nhiệt độ giữa các lần hàn
🔹Thông số điện (điện áp, cường độ dòng điện, tốc độ di chuyển)
🔹Chi tiết khí bảo vệ (nếu có)
🔹Hướng dẫn xử lý nhiệt sau khi hàn (PWHT)
✅ Mục đích: Hướng dẫn thợ hàn thực hiện mối hàn chất lượng trong điều kiện được kiểm soát và phê duyệt.

📂 PQR – Hồ sơ chứng nhận quy trình
🔍 Hồ sơ này là gì:
Hồ sơ chính thức về các mối hàn thử được thực hiện theo WPS sơ bộ, cùng với kết quả thử nghiệm cơ học và không phá hủy.
📋 Bao gồm:
🔹Các thông số thực tế được sử dụng trong quá trình hàn các phiếu thử nghiệm
🔹Chi tiết về vật liệu cơ bản và chất độn
🔹Kết quả thử nghiệm phiếu hàn (Độ bền kéo, thử uốn, thử va đập, kiểm tra vĩ mô/vi mô, v.v.)
🔹Báo cáo thử nghiệm trong phòng thí nghiệm và tiêu chí chấp nhận
🔹Kết quả NDT trực quan và thể tích
✅ Mục đích: Xác nhận rằng WPS có thể tạo ra mối hàn tốt đáp ứng các yêu cầu cơ học của quy tắc áp dụng.
📎 Lưu ý: Không thể sử dụng WPS để sản xuất trừ khi được hỗ trợ bởi PQR.

🧑‍🏭 WPQ – Chứng nhận hiệu suất thợ hàn (còn gọi là WQTR)
👨‍🔧 Chứng nhận này là gì:
Một tài liệu chứng nhận khả năng hàn của một thợ hàn cá nhân bằng cách sử dụng WPS đã được phê duyệt.
📋 Bao gồm:
🔹Danh tính và trình độ của thợ hàn
🔹Chi tiết phiếu kiểm tra và vị trí hàn
🔹Quy trình hàn được sử dụng
🔹Kết quả kiểm tra (Kiểm tra trực quan, RT, uốn, gãy)
🔹Chi tiết về hiệu lực và gia hạn/hết hạn
✅ Mục đích: Đảm bảo thợ hàn có thể cung cấp các mối hàn chất lượng theo WPS, thường được chứng nhận bởi thanh tra viên bên thứ ba hoặc nhóm QA.

📌 Cho dù bạn đang làm việc trong ngành Dầu khí, Điện, Hóa dầu, Hàng hải hay Xây dựng, những tài liệu này không phải là tùy chọn—chúng rất cần thiết để cung cấp các thành phần hàn đáng tin cậy và tuân thủ.

Krishna Nand Ojha

Kỹ thuật hàn, WPS, PQR, WPQ, Kiểm tra hàn, Kiểm soát chất lượng, Kỹ thuật cơ khí, QAQC, ASME, AWS, Chế tạo, Dầu khí, Bình áp lực, Ống, Chất lượng hàn, Xây dựng, Lãnh đạo chất lượng, QMS, Đánh giá chuẩn, KrishnaNandOjha, GovindTiwari, Cố vấn, Cải tiến liên tục, CQI, ASQ
(St.)
Kỹ thuật

Khi áp suất kéo vào trong: Kỹ thuật về sự sụp đổ áp suất bên ngoài

91

Khi áp suất kéo vào trong: Kỹ thuật về sự sụp đổ áp suất bên ngoài

Nguồn
Hiểu về sự cố áp suất bên ngoài trong bình chịu áp lực
OnePetro
Về một số yếu tố ảnh hưởng đến khả năng chống sụp đổ vỏ dưới áp lực bên ngoài
Microsoft Word – Hagen_Kine_30.6.docx
DigitalCommons@URI
Cơ chế nổ dưới nước: Tổng quan về thực nghiệm và tính toán

Khi áp suất kéo vào trong, gây ra sự sụp đổ áp suất bên ngoài, nó đề cập đến chế độ hỏng hóc cấu trúc trong đó áp suất bên ngoài tác động lên mạch hoặc cấu trúc hình ống vượt quá áp suất bên trong, dẫn đến vênh hoặc nổ tung vào trong. Hiện tượng này rất quan trọng trong các thiết kế kỹ thuật cho bình chịu áp lực, đường ống, cấu trúc dưới nước và vỏ giếng dầu khí, trong đó tính toàn vẹn của cấu trúc phải được duy trì chống lại áp lực thủy tĩnh hoặc môi trường bên ngoài.

Nguyên nhân và cơ chế sụp đổ áp suất bên ngoài

  • Chênh lệch áp suất: Sự sụp đổ áp suất bên ngoài xảy ra khi áp suất bên ngoài bình hoặc đường ống lớn hơn áp suất bên trong, gây ra ứng suất nén có thể uốn cong hoặc nghiền nát cấu trúc vào trong1.

  • Giảm áp suất bên trong nhanh chóng: Các tình huống như làm mát nhanh hoặc làm rỗng bình làm cho áp suất bên trong giảm nhanh chóng, tạo ra hiệu ứng chân không bên trong. Điều này khiến cấu trúc dễ bị tổn thương trước áp lực bên ngoài đẩy vào trong, có nguy cơ sụp đổ1.

  • Luồng không khí bị chặn: Nếu không khí hoặc khí bên trong tàu không thể thoát ra ngoài hoặc cân bằng do đường đi bị tắc nghẽn, áp suất bên trong không thể ổn định, làm tăng nguy cơ sụp đổ dưới áp suất bên ngoài1.

  • Các khuyết điểm về vật liệu và hình học: Các yếu tố như sự thay đổi độ dày của tường, độ bầu dục (không tròn), mài mòn đường kính bên trong và độ lệch tâm của tường làm giảm khả năng chống sụp đổ. Những khuyết điểm này tập trung ứng suất và giảm áp suất tới hạn xảy ra sự sụp đổ25.

  • Hiệu ứng tải kết hợp: Khả năng chống sụp đổ áp suất bên ngoài bị ảnh hưởng bởi các tải trọng bổ sung như uốn cong (uốn cong dogleg) và nén dọc trục. Nén dọc trục ban đầu có thể làm tăng khả năng chống sụp đổ đến một điểm nhưng sau đó làm giảm nó vượt quá giới hạn nhất định2.

Cân nhắc kỹ thuật để thiết kế chống lại sự sụp đổ áp suất bên ngoài

  • Tính chất vật liệu: Young Mô đun, cường độ chảy và hành vi ứng suất-biến dạng của vật liệu ảnh hưởng đến độ bền sụp đổ. Vật liệu có ứng suất năng suất và độ dẻo cao hơn mang lại khả năng chống chịu tốt hơn24.

  • Hình học và độ dày: Tỷ lệ giữa đường kính ngoài với độ dày thành (D / t) là một thông số quan trọng. Tăng độ dày thành hoặc tối ưu hóa hình học (ví dụ: vỏ hình trụ cứng vòng) giúp tăng khả năng chống sụp đổ23.

  • Gia cố kết cấu: Đối với thân tàu áp suất dưới nước hoặc ống nâng linh hoạt, chất làm cứng vòng hoặc lớp thân thịt được sử dụng để tăng áp suất vênh tới hạn và ngăn ngừa sụp đổ dưới áp suất thủy tĩnh36.

  • Phân tích phần tử hữu hạn (FEA): Các phương pháp FEA phi tuyến tiên tiến, bao gồm mô hình hóa dẻo đàn hồi và phương pháp lớp tương đương dựa trên năng lượng biến dạng, được sử dụng để dự đoán áp suất sụp đổ tới hạn và tối ưu hóa thiết kế236.

  • Tối ưu hóa thiết kế: Nghiên cứu tối ưu hóa các thông số như độ dày vỏ, kích thước chất làm cứng và khoảng cách để tối đa hóa độ bền sụp đổ đồng thời giảm thiểu trọng lượng, nâng cao độ an toàn và hiệu quả3.

Hậu quả của sự sụp đổ áp suất bên ngoài

  • Hỏng hóc kết cấu: Sụp đổ dẫn đến vênh hoặc nổ tung đột ngột vào trong, có thể gây ra sự cố thảm khốc của tàu hoặc đường ống14.

  • Sóng xung kích và xung áp suất: Trong các vụ nổ dưới nước, sự sụp đổ tạo ra sự sụt giảm áp suất nhanh chóng, sau đó là sóng xung kích khi chất lỏng xung quanh lao vào trong và bị nén, có khả năng làm hỏng các cấu trúc hoặc thiết bị gần đó4.

  • Giải phóng năng lượng: Độ dẻo của vật liệu ảnh hưởng đến năng lượng giải phóng trong quá trình sụp đổ. Vật liệu giòn có xu hướng giải phóng nhiều năng lượng hơn, dẫn đến xung nổ mạnh hơn4.

Tóm tắt

Kỹ thuật chống lại sự sụp đổ áp suất bên ngoài liên quan đến việc hiểu được sự tương tác của chênh lệch áp suất, tính chất vật liệu, hình học cấu trúc và điều kiện tải kết hợp. Các thiết kế phải tính đến khả năng giảm áp suất bên trong nhanh chóng, các khuyết điểm hình học và tải trọng môi trường. Sử dụng các phương pháp tính toán tiên tiến và tối ưu hóa các thông số kết cấu như độ dày thành và thiết kế chất làm cứng là điều cần thiết để đảm bảo an toàn và tính toàn vẹn của cấu trúc trong điều kiện áp suất bên ngoài.

Cách tiếp cận toàn diện này rất quan trọng trong các ứng dụng khác nhau, từ bình chịu áp lực và vỏ giếng dầu đến thân áp lực xe dưới nước và ống nâng linh hoạt được sử dụng trong môi trường nước sâu12346.

 

 

Serdar Koldas

⁉️⁉️Khi áp suất kéo vào bên trong:⁉️⁉️ Kỹ thuật cho sự sụp đổ do áp suất bên ngoài
Một trong những chế độ hỏng hóc bị đánh giá thấp nhưng lại tàn phá nhất trong thiết kế bình chịu áp suất là sự sụp đổ do áp suất bên ngoài. Không giống như các tình huống áp suất bên trong khi bình phồng ra ngoài, áp suất bên ngoài—chẳng hạn như chân không hoặc áp suất xung quanh trên bình đã hút chân không—có thể dẫn đến cong vênh đột ngột và biến dạng thảm khốc.

Bức ảnh bên dưới minh họa một sự cố trong sách giáo khoa về một bình hình trụ thẳng đứng chịu điều kiện áp suất bên ngoài không được thiết kế đầy đủ. Điều gì đã xảy ra sai sót và làm thế nào để ngăn ngừa?

Nguyên nhân gốc rễ của sự sụp đổ dưới áp suất bên ngoài

1. Độ nhạy cong vênh của xi lanh thành mỏng
Vỏ hình trụ rất dễ bị cong vênh hướng tâm dưới lực nén. Vỏ càng dài và mỏng thì càng có khả năng sụp đổ dưới áp suất chênh lệch.

2. Thiếu vòng gia cố
Nếu không có bộ gia cố bên ngoài, các phần dài không được hỗ trợ sẽ mất khả năng chống sụp đổ. Cong vênh thường bắt đầu ở giữa nhịp giữa các điểm hỗ trợ.

3. Sử dụng không đúng cách các phép tính ASME UG-28
Mục VIII Phân khu 1, UG-28 của Bộ luật ASME định nghĩa các quy tắc cho thiết kế áp suất bên ngoài. Việc bỏ qua mục này hoặc áp dụng sai các công thức của nó có thể dẫn đến các thiết kế không an toàn.

4. Các sự kiện chân không bất ngờ
Các điều kiện chân không trong quá trình xả, vệ sinh hoặc thoát hơi nước nhanh có thể vượt quá khả năng chống sụp đổ của bình nếu không được tính đến đúng trong thiết kế.

UG-28 giúp ngăn ngừa hỏng hóc như thế nào

Các nhà thiết kế phải xác định áp suất bên ngoài quan trọng bằng cách sử dụng các thông số vật liệu và hình học. Biểu thức đơn giản để ước tính:

Pcr ≈ (2 × E) / (L/D)^2 × (t/D)

Trong đó:

Pcr = áp suất uốn cong tới hạn

E = mô đun đàn hồi của vật liệu vỏ

L = chiều dài vỏ không được hỗ trợ

D = đường kính ngoài

t = độ dày thành

Trong thiết kế thực tế, ASME sử dụng biểu đồ thiết kế, hệ số A và B, và xem xét các đặc tính riêng của vật liệu và hiệu chỉnh nhiệt độ. Phân tích phần tử hữu hạn (FEA) thường được sử dụng để xác thực trong các hình học ranh giới hoặc phức tạp.

Bài học cho Kỹ sư cơ khí

– Luôn thiết kế cho chân không, ngay cả khi không mong đợi hoạt động trong điều kiện chân không.

– Áp dụng vòng gia cố khi cần thiết dựa trên các hướng dẫn của UG-29.

– Kiểm tra định kỳ để phát hiện sự ăn mòn có thể làm giảm độ bền của thành.

– Sử dụng FEA để xác thực tính toàn vẹn của vỏ, đặc biệt là trong các hình học tùy chỉnh hoặc các ứng dụng có rủi ro cao.

– Các lỗi áp suất bên ngoài không diễn ra dần dần—chúng xảy ra ngay lập tức và không thể phục hồi. Đó là lý do tại sao việc phòng ngừa cong vênh phải được ưu tiên hàng đầu chứ không phải là việc nghĩ đến sau.

#PressureVessels #ASME #UG28 #MechanicalEngineering #ExternalPressure #StructuralFailure #Buckling #FEA #StiffenerDesign #EngineeringIntegrity #VacuumCollapse #InspectionMatters #WeldingDesign #DesignVerification

Bình chịu áp lực, ASME, UG28, Kỹ thuật cơ khí, Áp suất bên ngoài, Hỏng hóc kết cấu, Uốn cong, FEA, Thiết kế bộ phận gia cường, Tính toàn vẹn của kỹ thuật, Sụp đổ chân không, Vấn đề kiểm tra, Thiết kế hàn, Xác minh thiết kế
(St.)
Kỹ thuật

So sánh giữa ba tiêu chuẩn thiết kế bình chịu áp lực chính: 🇨🇳 GB 150.1–150.3 (Trung Quốc) 🇺🇸 ASME BPVC Phần VIII Div. 1 (Hoa Kỳ) 🇷🇺 GOST 34233.1 & 34233.2 (Nga)

222

So sánh giữa ba tiêu chuẩn thiết kế bình chịu áp lực chính: 🇨🇳 GB 150.1–150.3 (Trung Quốc) 🇺🇸 ASME BPVC Phần VIII Div. 1 (Hoa Kỳ) 🇷🇺 GOST 34233.1 & 34233.2 (Nga)

Nguồn
Chi tiết GB 150.1-2011 – Bộ luật Trung Quốc
GB 150.1 Phần 1 PDF – Scribd
chinesestandard.net
GB / T 150.1-2024 PDF tiếng Anh (GB 150.1-2011, GB 150-1998)
Giải thích tiêu chuẩn bình chịu áp lực ASME Phần VIII – Red River

Dưới đây là so sánh chi tiết về ba tiêu chuẩn thiết kế bình chịu áp lực chính: GB 150.1–150.3 của Trung Quốc, ASME BPVC Section VIII Division 1 của Hoa Kỳ và GOST 34233.1 & 34233.2 của Nga.

Phạm vi và ứng dụng

  • GB 150.1–150.3 (Trung Quốc)
    Bao gồm các yêu cầu chung về vật liệu, thiết kế, chế tạo, kiểm tra và nghiệm thu bình chịu áp lực kim loại có áp suất thiết kế lên đến 35 MPa đối với bình thép và nhiệt độ nằm trong khoảng từ -269 °C đến 900 °C. Nó bao gồm các quy định cụ thể cho các dạng cấu trúc, vật liệu khác nhau (thép, nhôm, titan, đồng, hợp kim niken, zirconium) và các loại bình như bình có mặt cắt ngang không tròn và xi lanh quấn ruy băng bằng thép phẳng. Nó không bao gồm các bình có áp suất thiết kế dưới 0,1 MPa hoặc chân không thấp hơn 0,02 MPa
    2021.

  • ASME BPVC Phần VIII Mục 1 (Hoa Kỳ)
    Áp dụng cho việc thiết kế, chế tạo, kiểm tra, thử nghiệm và chứng nhận các bình chịu áp lực hoạt động ở áp suất bên trong hoặc bên ngoài vượt quá 15 psig (khoảng 0,1 MPa). Nó bao gồm các tàu nung và không nung với các phụ lục bắt buộc và không bắt buộc chi tiết về vật liệu, hàn, rèn, kiểm tra không phá hủy và nghiệm thu kiểm tra. Nó được sử dụng rộng rãi trên toàn cầu trong các ngành công nghiệp và quy mô doanh nghiệp
    1719.

  • GOST 34233.1 & 34233.2 (Nga)
    GOST 34233.1-2017 quy định các tiêu chuẩn và phương pháp tính toán cường độ và các yêu cầu chung đối với tàu thuyền và thiết bị. Tiêu chuẩn GOST nhấn mạnh các phương pháp tính toán cường độ và các yêu cầu thiết kế chung cho bình chịu áp lực. Các tiêu chuẩn này được sử dụng cho các tàu chịu các điều kiện áp suất khác nhau, bao gồm cả áp suất bên trong và bên ngoài. Các tiêu chuẩn GOST tập trung vào tính toàn vẹn và an toàn của cấu trúc thông qua các phương pháp tính toán nghiêm ngặt
    16.

Triết lý và phương pháp thiết kế

  • GB 150.1–150.3
    Nhấn mạnh một cách tiếp cận toàn diện bao gồm xác định áp suất thiết kế dựa trên điều kiện vận hành, thiết bị giảm áp và các phương tiện giữ lạnh cho khí hóa lỏng. Nó bao gồm các yêu cầu thiết kế cụ thể đối với các thành phần như đầu, khe hở, mặt bích và mối hàn, đồng thời giải quyết việc ngăn ngừa gãy giòn ở nhiệt độ thấp. Tiêu chuẩn tích hợp đánh giá rủi ro và xác định chế độ hỏng hóc như một phần của quá trình thiết kế
    2021.

  • ASME BPVC Phần VIII Phần 1
    tuân theo triết lý “Thiết kế theo quy tắc” với các yêu cầu và cấm bắt buộc đối với vật liệu, thiết kế, chế tạo, kiểm tra và thử nghiệm. Nó sử dụng lý thuyết ứng suất bình thường để phân tích lỗi. Nó cung cấp các quy tắc chi tiết cho các vật liệu và phương pháp chế tạo khác nhau và bao gồm các yêu cầu chứng nhận và đánh dấu. Phân khu 2 và 3 đưa ra các quy tắc thiết kế bình áp suất cao và thay thế, với Phân khu 2 sử dụng lý thuyết năng lượng biến dạng von Mises cho sự cố
    17.

  • GOST 34233.1 & 34233.2
    Tập trung vào các định mức và phương pháp tính toán cường độ, nhấn mạnh an toàn kết cấu thông qua các quy tắc tính toán chi tiết. Các tiêu chuẩn cung cấp các yêu cầu chung chi phối các tính toán thiết kế và xem xét các tiêu chí hỏng hóc và điều kiện tải khác nhau. Cách tiếp cận này nghiêm ngặt và tính toán chuyên sâu, đảm bảo tính toàn vẹn của cấu trúc trong điều kiện áp suất và nhiệt độ cụ thể
    16.

Vật liệu và phạm vi nhiệt độ

  • GB 150.1–150.3
    Bao gồm nhiều loại vật liệu bao gồm các loại thép và kim loại màu khác nhau, với nhiệt độ sử dụng cho phép từ -269 °C đến 900 °C. Nó chỉ định các đặc tính vật liệu, ứng suất cho phép và tính chất cơ học theo các tiêu chuẩn tham chiếu. Nó cũng bao gồm các điều khoản cho các ứng dụng ở nhiệt độ thấp và ngăn ngừa gãy giòn
    2021.

  • ASME BPVC Phần VIII Phần 1
    Quy định các loại vật liệu có yêu cầu bắt buộc đối với việc sử dụng chúng trong xây dựng bình chịu áp lực, bao gồm hàn và rèn. Nó bao gồm một phạm vi nhiệt độ rộng phù hợp với hầu hết các ứng dụng công nghiệp và bao gồm các tiêu chí thiết kế bổ sung cho vật liệu và chế tạo
    1719.

  • GOST 34233.1 & 34233.2
    Chỉ định vật liệu và ứng suất cho phép của chúng dựa trên tiêu chuẩn vật liệu của Nga, tập trung vào việc đảm bảo độ bền và an toàn ở nhiệt độ và áp suất thiết kế. Các tiêu chuẩn bao gồm các cân nhắc về các đặc tính vật liệu liên quan đến môi trường hoạt động của tàu
    16.

Chế tạo, kiểm tra và thử nghiệm

  • GB 150.1–150.3
    Bao gồm các yêu cầu chi tiết về chế tạo, kiểm tra và thử nghiệm nghiệm thu. Nó tham khảo các tiêu chuẩn liên quan cho bộ trao đổi nhiệt, bể chứa hình cầu và bình kim loại cụ thể. Phương pháp kiểm tra và thử nghiệm phù hợp với việc đảm bảo chất lượng và an toàn trong quá trình sản xuất và vận hành
    2021.

  • ASME BPVC Phần VIII Phần 1
    Chứa các quy tắc toàn diện để chế tạo bao gồm hàn, rèn, hàn và kiểm tra không phá hủy. Nó bắt buộc các quy trình kiểm tra và thử nghiệm để đảm bảo tuân thủ và an toàn, bao gồm kiểm tra áp suất và nhãn hiệu chứng nhận (U, UM, UV)
    1719.

  • GOST 34233.1 & 34233.2
    Nhấn mạnh việc kiểm tra và thử nghiệm như một phần của quy trình xác minh độ bền. Các tiêu chuẩn yêu cầu kiểm tra và thử nghiệm kỹ lưỡng để xác nhận chất lượng thiết kế và chế tạo tàu, tập trung vào độ an toàn và tuân thủ các tiêu chuẩn tính toán
    16.

Bảng tóm tắt

Khía cạnh GB 150.1–150.3 (Trung Quốc) ASME BPVC Phần VIII Phân khu 1 (Hoa Kỳ) GOST 34233.1 & 34233.2 (Nga)
Phạm vi Bình áp lực kim loại lên đến 35 MPa, nhiệt độ rộng phạm vi (-269 °C đến 900 °C) Tàu > 15 psig, nung / chưa nung, sử dụng rộng rãi trong công nghiệp Tính toán cường độ và yêu cầu thiết kế chung
Triết lý thiết kế Đánh giá rủi ro, phân tích chế độ lỗi, tiêu chí thiết kế toàn diện Thiết kế theo quy tắc, lý thuyết ứng suất bình thường, yêu cầu bắt buộc Tính toán chuyên sâu, tập trung vào sức mạnh và an toàn
Vật liệu Thép và các kim loại khác nhau, ứng suất và tính chất cho phép chi tiết Các loại vật liệu cụ thể, quy tắc hàn và rèn Tính chất vật liệu theo tiêu chuẩn Nga
Chế tạo & Thử nghiệm Chế tạo, kiểm tra, nghiệm thu chi tiết Chế tạo toàn diện và NDE, dấu chứng nhận Kiểm tra / thử nghiệm để xác minh độ bền và sự tuân thủ
Lý thuyết hư hỏng Bao gồm phòng ngừa gãy giòn và đánh giá rủi ro Lý thuyết ứng suất bình thường (Phân 1), lý thuyết thay thế trong Phân 2 Tính toán sức bền dựa trên định mức và phương pháp

Sự so sánh này nhấn mạnh rằng mặc dù cả ba tiêu chuẩn đều nhằm đảm bảo an toàn và độ tin cậy của bình chịu áp lực, nhưng chúng khác nhau về triết lý thiết kế, phạm vi và yêu cầu kỹ thuật chi tiết, phản ánh các thông lệ công nghiệp quốc gia và môi trường pháp lý của họ. ASME được công nhận trên toàn cầu với trọng tâm mạnh mẽ vào các quy tắc và chứng nhận theo quy định, GB 150 tích hợp sự đa dạng về vật liệu và cấu trúc rộng rãi với thiết kế dựa trên rủi ro và GOST nhấn mạnh các tính toán cường độ nghiêm ngặt và an toàn kết cấu.

 

🔍 Nghiên cứu so sánh: Tiêu chuẩn bình chịu áp suất
Gần đây, tôi đã tiến hành so sánh giữa ba tiêu chuẩn thiết kế bình chịu áp suất chính:
🇨🇳 GB 150.1–150.3 (Trung Quốc)
🇺🇸 ASME BPVC Section VIII Div. 1 (Hoa Kỳ)
🇷🇺 GOST 34233.1 & 34233.2 (Nga)
Mỗi tiêu chuẩn phản ánh các phương pháp tiếp cận kỹ thuật, yếu tố an toàn và triết lý thiết kế độc đáo bắt nguồn từ bối cảnh công nghiệp và quy định của chúng.
So sánh này làm nổi bật cả sự khác biệt về mặt kỹ thuật và hiểu biết sâu sắc về các hoạt động thiết kế toàn cầu.
#MechanicalEngineering#PressureVessels#ASME#GB150#GOST#DesignStandards#EngineeringInsights
Kỹ thuật cơ khí, Bình chịu áp lực, ASME, GB 150, GOST, Tiêu chuẩn thiết kế, Thông tin chuyên sâu về kỹ thuật
(St.)
Kỹ thuật

Điều kiện chu kỳ khắc nghiệt trong thiết kế đường ống – ASME B31.3

94

Điều kiện chu kỳ khắc nghiệt trong thiết kế đường ống – ASME B31.3

Nguồn
Becht
Khi nào nên quy tắc cho các điều kiện chu kỳ nghiêm trọng (dịch vụ) trong …
” dịch vụ chu kỳ nghiêm trọng ” ? – Các vấn đề về mã ASME (cơ khí)
Điều kiện chu kỳ nghiêm trọng theo Quy trình Đường ống là gì …
Điều kiện chu kỳ khắc nghiệt – ASME B31.3 | Bản PDF | Mệt mỏi (Vật liệu)

Các điều kiện chu kỳ khắc nghiệt trong ASME B31.3 đề cập đến các thành phần hoặc mối nối đường ống cụ thể chịu tải mỏi do ứng suất theo chu kỳ thường xuyên và đáng kể, đảm bảo các phương pháp xây dựng chống hỏng mỏi tốt hơn. Khái niệm này không phải là về dịch vụ chất lỏng mà là về các điều kiện cơ học mà sự mệt mỏi là một mối quan tâm.

Định nghĩa và khả năng áp dụng

  • Trước phiên bản năm 2016: Các tình trạng chu kỳ nghiêm trọng được xác định bởi hai tiêu chí chính:

    • Ứng suất dịch chuyển tương đương tính toán (SE) vượt quá 80% ứng suất cho phép (SA).

    • Số chu kỳ dịch chuyển tương đương (N) vượt quá 7.000.

  • Kể từ phiên bản năm 2016: Định nghĩa được đơn giản hóa để cho phép chủ sở hữu hoặc nhà thiết kế chỉ định các thành phần hoặc khớp nối cụ thể là dịch vụ chu kỳ nghiêm trọng nếu khả năng chống mỏi được đảm bảo, mà không cần dựa vào ứng suất hoặc số chu kỳ được tính toán143.

Khi nào nên sử dụng quy tắc điều kiện chu kỳ nghiêm trọng

  • Các quy tắc này chỉ áp dụng cho các thành phần hoặc mối nối cụ thể, không áp dụng cho toàn bộ hệ thống đường ống.

  • Thường có liên quan trong các hệ thống có chu kỳ nhiệt hoặc cơ học thường xuyên, chẳng hạn như lò phản ứng hóa học hàng loạt quay vòng nhiều hơn một lần một ngày hoặc đường ống bị rung.

  • Các kết nối nhánh nhỏ gắn với đường ống chính thường gặp phải sự cố mỏi và có thể được chỉ định là chu kỳ nghiêm trọng nếu kinh nghiệm cho thấy dễ bị tổn thương31.

Yêu cầu thiết kế và chế tạo

  • Bắt buộc phải sử dụng các thành phần và khớp nối chống mỏi hơn.

  • Một số thành phần nhất định bị cấm trong điều kiện chu kỳ nghiêm trọng (ví dụ: mặt bích trượt trừ khi được hàn kép, các đầu sơ khai khớp nối độc quyền, bu lông cường độ năng suất thấp).

  • Chế tạo yêu cầu các mối hàn mịn, xuyên thấu hoàn toàn với kiểm tra trực quan và thể tích 100%.

  • Các tiêu chí chấp nhận nghiêm ngặt hơn đối với mối hàn được áp dụng, bao gồm cả việc cấm cắt gỉ.

  • Quy trình hàn cụ thể và phương pháp kiểm tra (hạt từ tính hoặc chất xâm nhập chất lỏng) được yêu cầu đối với các mối nối trong điều kiện chu kỳ khắc nghiệt34.

Cân nhắc thực tế

  • Việc chỉ định phụ thuộc vào kinh nghiệm hoạt động và phán đoán thiết kế hơn là các ngưỡng số nghiêm ngặt.

  • Các điều kiện tuần hoàn thường liên quan đến sự thay đổi nhiệt độ hoặc áp suất đáng kể gây ra các chu kỳ dịch chuyển có thể dẫn đến mệt mỏi.

  • Ví dụ, một chu kỳ rây phân tử loại bỏ độ ẩm một hoặc hai lần mỗi ngày với sự thay đổi nhiệt độ lớn sẽ đủ điều kiện là dịch vụ chu kỳ nghiêm trọng do số lượng chu kỳ dịch chuyển cao trong suốt vòng đời của nhà máy5.

Tóm tắt

Các điều kiện chu kỳ khắc nghiệt trong ASME B31.3 là một chỉ định cho các thành phần hoặc mối nối đường ống yêu cầu tăng cường khả năng chống mỏi do tải theo chu kỳ thường xuyên. Bản cập nhật mã năm 2016 cho phép chủ sở hữu hoặc nhà thiết kế chỉ định các điều kiện này dựa trên kinh nghiệm thay vì các tiêu chí số nghiêm ngặt. Các quy tắc áp đặt các yêu cầu thiết kế, vật liệu, chế tạo và kiểm tra nghiêm ngặt hơn để giảm thiểu rủi ro hỏng hóc mỏi trong các thành phần đó134.

Cách tiếp cận này đảm bảo an toàn và độ bền trong các hệ thống đường ống tiếp xúc với các điều kiện dịch vụ theo chu kỳ khắt khe.

⁉️ Hiểu về các điều kiện chu kỳ nghiêm trọng trong thiết kế đường ống – Một cách tiếp cận quan trọng theo ASME B31.3 ⁉️

Trong thiết kế hệ thống đường ống, mỏi không chỉ là một lý thuyết: nó là một yếu tố quan trọng khi các hệ thống phải thường xuyên khởi động/tắt máy hoặc thay đổi áp suất và nhiệt độ.

Hình 302.3.5-1 của mã ASME B31.3 cho thấy hệ số phạm vi ứng suất (f) thay đổi như thế nào theo số chu kỳ (N).

Một hệ thống được thiết kế để hoạt động trong 25 năm với chu kỳ hàng ngày (25 × 365 = 9.125 chu kỳ) gần với ngưỡng mà f < 1,0, ngụ ý giảm phạm vi ứng suất cho phép do mỏi.

Nhưng những hàm ý không dừng lại ở đó:

Theo F301.10.3, một hệ thống được phân loại theo Điều kiện chu kỳ nghiêm trọng nếu nó trải qua:

Phạm vi ứng suất cao và

Chu kỳ thường xuyên—được định nghĩa là nhiều hơn một chu kỳ mỗi ngày.

Phân loại này không chỉ mang tính học thuật. Nó yêu cầu các biên độ thiết kế chặt chẽ hơn và yêu cầu đánh giá mỏi chi tiết hơn, đặc biệt là trong các hệ thống như:

• Lò phản ứng hóa học trong hoạt động theo mẻ,
• Đường ống có biến thiên nhiệt hoặc áp suất tần số cao,
• Kết nối với máy rung hoặc máy qua lại.

Các câu hỏi chính dành cho nhà thiết kế và thanh tra:

Hệ thống có hoạt động với nhiều hơn một chu kỳ mỗi ngày không?

Phạm vi ứng suất được tính toán có gần với giới hạn cho phép không?

Hệ số f đã được áp dụng đúng trong các đánh giá nhạy cảm với độ mỏi chưa?

Điểm chính:
‼️‼️ Một hệ thống hoạt động hàng ngày trong 25 năm (hơn 9.125 chu kỳ) không nên tự động được coi là an toàn khi f = 1.0.
Đánh giá độ mỏi đúng cách là điều cần thiết và Phụ lục W của bộ quy tắc cung cấp thêm hỗ trợ cho việc đánh giá dịch vụ theo chu kỳ.

#ASME #B313 #DiseñoDeTuberías #Fatiga #CondicionesCíclicasSeveras #IngenieríaMecánica #IngenieríaDeConfiabilidad #IngenieríaDeInspección #AnálisisDeEsfuerzos #TuberíasDePresión

ASME, B31.3, Thiết kế đường ống, Mỏi, Điều kiện chu kỳ khắc nghiệt, Kỹ thuật cơ khí, Kỹ thuật độ tin cậy, Kỹ thuật kiểm tra, Phân tích ứng suất, Ống áp suất

(St.)