Kỹ thuật

Hàn temper bead (TBW)

18

Hàn temper bead (TBW)

Nguồn
Casti
Kết nối các mã từ hàn hạt nhiệt độ với ASME …

papers.ssrn.com yêu thích

papers.ssrn.com
[PDF] Hàn hạt nhiệt độ (TBW) – ASME Phần IX

papers.ssrn.com yêu thích

papers.ssrn.com
Hàn hạt nhiệt độ (TBW) của Dzevad Hadzihafizovic – SSRN

sciendo.com yêu thích

Khoa học
[PDF] HÀN HẠT NHIỆT CỦA THÉP S420G2 + M TRONG NƯỚC …
Hàn hạt nhiệt độ (TBW) hoặc lắng đọng mối hàn có kiểm soát (CWD ...
Ưu điểm của ứng dụng hàn hạt nhiệt độ ...
EJAM (2-4-GA15) Hình 6 Đề cương về hàn hạt nhiệt độ ...

Hàn temper bead (TBW) là một kỹ thuật hàn chuyên dụng chủ yếu được sử dụng cho thép cacbon, thép hợp kim thấp và thép hợp kim khi những vật liệu này được thiết kế để sử dụng trong điều kiện hàn hoặc khi xử lý nhiệt sau hàn (PWHT) là không thực tế hoặc không thể. TBW đã chính thức được áp dụng vào Bộ luật nồi hơi và bình áp lực ASME, Phần IX, trong ấn bản năm 2004, cung cấp các quy tắc cụ thể để đủ điều kiện và thực hiện phương pháp hàn này (ASME Phần IX, QW-290)123.

Theo ASME Phần IX – QG-109, hàn hạt nhiệt độ được định nghĩa là:

“Một hạt hàn được đặt tại một vị trí cụ thể trong hoặc trên bề mặt của mối hàn với mục đích ảnh hưởng đến các đặc tính luyện kim của vùng ảnh hưởng nhiệt (HAZ) hoặc kim loại hàn đã lắng đọng trước đó.”

Hạt có thể được đặt phía trên, bằng phẳng với hoặc bên dưới bề mặt kim loại cơ bản và có thể hoặc không được tháo ra sau khi hàn1.

Mục đích chính của TBW là làm tôi vùng ảnh hưởng nhiệt (HAZ) của mối hàn mà không yêu cầu PWHT. Điều này đạt được bằng cách lắng đọng các hạt hàn tiếp theo với kích thước và vị trí được kiểm soát, làm nóng lại và làm tôi kim loại hàn và HAZ đã lắng đọng trước đó, dẫn đến cấu trúc vi mô tinh tế với độ cứng thấp hơn và độ dẻo dai được cải thiện. Quá trình ủ cục bộ này làm giảm ứng suất dư, tinh chế các hạt thô và cải thiện các tính chất cơ học như độ bền và khả năng chống va đập ở nhiệt độ thấp1256.

Nguyên lý luyện kim đằng sau TBW là ủ các pha martensitic hoặc cứng được hình thành trong HAZ trong quá trình hàn. Tốc độ làm mát cao trong hàn thường tạo ra martensit cứng và giòn trong thép cacbon và hợp kim thấp. Nhiệt đầu vào từ các hạt ủ tiếp theo làm nóng lại các vùng này đến nhiệt độ cao hơn nhiệt độ biến đổi (AC1), cho phép martensit biến đổi thành martensit tôi luyện, có độ cứng thấp hơn và độ dẻo cao hơn6.

  • TBW đặc biệt hữu ích trong các tình huống PWHT không thực tế do lý do kỹ thuật hoặc kinh tế, chẳng hạn như sửa chữa tại chỗ các bình chịu áp lực, đường ống, máy bơm, van và đường ống trong các nhà máy phát điện156.

  • Nó được áp dụng rộng rãi trong các phần dày, nơi PWHT khó khăn.

  • TBW giúp tránh nứt nguội bằng cách giảm độ cứng HAZ và ứng suất dư.

  • Nó cải thiện khả năng hàn và tính chất cơ học mà không cần các quy trình xử lý nhiệt đắt tiền.

  • Kỹ thuật này cũng có lợi trong điều kiện hàn ướt dưới nước đối với thép cường độ cao, nơi nó làm giảm độ cứng và tính nhạy cảm với vết nứt47.

TBW là một phương pháp hàn nhiều lần trong đó các hạt hàn được lắng đọng theo trình tự và kích thước được kiểm soát. Mã ASME Phần IX quy định rằng độ chồng chéo giữa các hạt phải từ 25% đến 75% để đảm bảo ủ hiệu quả1. Thợ hàn phải kiểm soát cẩn thận kích thước hạt, vị trí, nhiệt đầu vào, thông số hàn và góc điện cực để đạt được hiệu quả luyện kim và tính chất cơ học mong muốn145.

Một số kỹ thuật temper bead tồn tại, bao gồm:

  • Kỹ thuật Half Bead

  • Kỹ thuật lớp nhất quán

  • Kỹ thuật Temper Bead thay thế

  • Kỹ thuật lắng đọng có kiểm soát

  • Kỹ thuật Weld Toe Temper

Mỗi kỹ thuật được lựa chọn dựa trên các yêu cầu sửa chữa hoặc chế tạo và kết quả luyện kim mong muốn5.

Hàn temper bead (TBW) là một kỹ thuật hàn nhiều lần có kiểm soát được thiết kế để cải thiện tính chất luyện kim và cơ học của mối hàn, đặc biệt là trong thép cacbon và hợp kim thấp, bằng cách ủ vùng ảnh hưởng nhiệt thông qua đầu vào nhiệt của hạt hàn tiếp theo. Nó được hệ thống hóa trong ASME Phần IX và được sử dụng rộng rãi khi xử lý nhiệt sau mối hàn là không thực tế, cung cấp một giải pháp thay thế đáng tin cậy và tiết kiệm chi phí cho PWHT với những lợi ích bao gồm giảm độ cứng, cấu trúc hạt tinh chế, cải thiện độ dẻo dai và độ bền12356.

Giải thích này dựa trên các nguồn kỹ thuật chi tiết bao gồm giải thích mã ASME, nghiên cứu luyện kim và các ứng dụng thực tế của TBW trong các môi trường khác nhau1234567.

 

🔥 Làm chủ hàn temper bead: Một kỹ thuật kỳ diệu trong sửa chữa thiết bị quan trọng🔥

Trong môi trường áp suất cao, nhiệt độ cao — như nhà máy điện, nhà máy lọc dầu và cơ sở hóa dầu — tính toàn vẹn của mối hàn là tất cả. Đó là lúc hàn temper (TBW) xuất hiện như một giải pháp thay thế thông minh, đáng tin cậy cho Xử lý nhiệt sau hàn (PWHT) khi không khả thi hoặc có thể làm giảm các đặc tính của vật liệu.

📌 Hàn temper bead là gì?
Một kỹ thuật hàn được kiểm soát trong đó chu kỳ nhiệt của từng hạt cố ý làm tôi mối hàn đã lắng đọng trước đó hoặc Vùng ảnh hưởng nhiệt (HAZ), cải thiện độ dẻo dai, giảm độ cứng và giảm ứng suất dư — tất cả đều không cần gia nhiệt bên ngoài.

📊 Tại sao nó quan trọng:
• PWHT không phải lúc nào cũng là một lựa chọn (đặc biệt là đối với thép hợp kim siêu nhỏ hiện đại).
• TBW rất cần thiết cho việc sửa chữa tại chỗ, phục hồi bình chịu áp suất và hệ thống đường ống quan trọng.
• Được ASME Mục IX công nhận và đủ điều kiện.

🧪 Lợi ích về luyện kim:
• Tinh chỉnh cấu trúc hạt trong HAZ.
• Giảm nguy cơ nứt nguội bằng cách tôi luyện các cấu trúc martensitic.
• Tăng cường độ bền va đập ở các khu vực hàn.

🔍 Các yếu tố thành công chính:
• Kiểm soát đầu vào nhiệt (thông qua ampe, vôn, tốc độ di chuyển hoặc chiều dài lớp phủ).
• Chồng chéo chiến lược các hạt liên tiếp (thường là 30–70%).
• Vị trí chính xác của “hạt tôi luyện bề mặt” để xử lý các vùng chưa tôi luyện.

💡 Dùng cho:
• Hợp kim Cr cao (P91, P22)
• Sửa chữa mối hàn thép có thể tôi
• Các mối nối quan trọng trong nồi hơi, lò phản ứng, đường ống

📘 Rất khuyến khích đọc:
👉 “Exploring Temper Bead Welding” của Walter J. Sperko, P.E. — một ấn phẩm phải đọc giúp đơn giản hóa sự phức tạp của TBW thành những hiểu biết có thể hành động được cho các kỹ sư hiện trường và chuyên gia kiểm tra.

www.sperkoengineering.com

🔁 Have you implemented TBW in your plant or project? What challenges or successes have you encountered?

#TemperBeadWelding #WeldingEngineering #ASME #WeldIntegrity #PWHTAlternative #PressureVessels #CorrosionPrevention #MetallurgyMatters #QAQC #WeldingRepair #WeldingInnovation #WeldingTechnology #SperkoEngineering #InspectionExcellence

Hàn Temper bead, Kỹ thuật hàn, ASME, Tính toàn vẹn của mối hàn, Phương án thay thế PWHT, Bình chịu áp lực, Ngăn ngừa ăn mòn, Vấn đề luyện kim, QAQC, Sửa chữa hàn, Đổi mới hàn, Công nghệ hàn, Kỹ thuật Sperko, Kiểm tra xuất sắc
(St.)
Kỹ thuật

Thiết kế thiết bị quy trình

12

Thiết kế thiết bị quy trình

Nguồn
Ac
[PDF] SCH1307- THIẾT KẾ THIẾT BỊ QUY TRÌNH – Sathyabama

onlinecourses.nptel.ac.in favicon

onlinecourses.nptel.ac
Thiết kế thiết bị quy trình – Khóa học – Swayam – NPTEL

antdemy.vn yêu thích

Antdemy
Thiết kế thiết bị quy trình – Antdemy
msubbu
Thiết kế thiết bị quy trình – Ghi chú bài giảng – msubbu
THIẾT BỊ QUY TRÌNH & THIẾT KẾ CƠ KHÍ
Thiết bị quy trình và thiết kế nhà máy: Nguyên tắc và thực tiễn ...
Thiết kế thiết bị quy trình – BookStation
Thiết kế thiết bị quy trình | Dịch vụ Kỹ thuật & Thiết bị
Sách thiết kế thiết bị quy trình Joshi với giá ₹ 525 / cái ...
Dịch vụ thiết kế thiết bị quy trình tại Navi Mumbai | ID...

Thiết kế thiết bị quy trình là một ngành quan trọng trong kỹ thuật hóa học liên quan đến thiết kế kỹ thuật, lựa chọn và bố trí thiết bị được sử dụng trong các quy trình hóa học. Nó bao gồm thiết kế các hoạt động của các đơn vị khác nhau như bình chịu áp lực, bộ trao đổi nhiệt, cột chưng cất, máy nén, máy bơm và hệ thống đường ống, đảm bảo chúng hoạt động an toàn, hiệu quả và tiết kiệm trong nhà máy.

  • Thiết kế bố trí nhà máy tổ chức cơ sở vật chất để tối ưu hóa việc sử dụng thiết bị, vật tư, con người, năng lượng, nhằm giảm thiểu chi phí, nâng cao chất lượng, đảm bảo an toàn, thoải mái cho nhân viên.

  • Quy trình thiết kế bố trí bao gồm các giai đoạn như thu thập thông tin (xác định yêu cầu và vận hành sản xuất), phân tích sản xuất và quy trình (cân bằng dây chuyền sản xuất và nghiên cứu yêu cầu dòng chảy), xác định dịch vụ hỗ trợ, thực hiện và đánh giá kế hoạch bố trí.

  • Phân tích dòng chảy tập trung vào việc giảm thiểu khoảng cách di chuyển, lùi lại, giao thông chéo và các bước quy trình không cần thiết, sử dụng các công cụ như biểu đồ quy trình và sơ đồ dòng chảy để hợp lý hóa hoạt động và giảm chi phí sản xuất1.

  • Đối với thiết bị trao đổi nhiệt, quá trình thiết kế liên quan đến việc thu thập các tính chất nhiệt lý của chất lỏng, thực hiện cân bằng năng lượng để tìm nhiệm vụ nhiệt, giả định hệ số truyền nhiệt tổng thể, quyết định số lần đi qua vỏ và ống, tính toán diện tích truyền nhiệt và chọn vật liệu và kích thước cho ống và vỏ. Thiết kế thường lặp đi lặp lại để tối ưu hóa các thông số như hệ số truyền nhiệt và giảm áp suất16.

  • Thiết kế cột chưng cất dựa trên dữ liệu cân bằng hơi-lỏng (VLE) và các phương pháp đồ họa như phương pháp McCabe-Thiele để xác định số giai đoạn lý thuyết cần thiết để tách, xem xét các đường vận hành cho các phần khác nhau của cột1.

  • Bộ trao đổi nhiệt bao gồm các loại ống đôi, vỏ và ống, xoắn ốc và vây, mỗi loại phù hợp với các ứng dụng và đặc tính chất lỏng khác nhau. Thiết kế phải xem xét sự sắp xếp dòng chảy (song song hoặc ngược dòng), hệ số truyền nhiệt, các yếu tố bám bẩn và các ràng buộc cơ học như đường kính ống và khoảng cách vách ngăn6.

  • Bình chịu áp lực và bình không áp lực yêu cầu tuân thủ các tiêu chuẩn và quy tắc an toàn, xem xét các yếu tố như độ bền vật liệu, gia cố các lỗ và ứng suất làm việc an toàn5.

  • Các thiết bị khác bao gồm máy nén, máy bơm, cột đóng gói, tầng sôi và thiết bị xử lý rắn, mỗi thiết bị đều có tiêu chí thiết kế cụ thể để đảm bảo tính toàn vẹn và hiệu quả hoạt động5.

  • Thiết kế thiết bị an toàn liên quan đến việc hiểu ứng suất cơ học, khả năng tương thích vật liệu và các yêu cầu quy định. Thiết bị phải được thiết kế để chịu được các nguy cơ vận hành và đảm bảo tính toàn vẹn trong suốt thời gian sử dụng của nó5.

  • Sinh viên và chuyên gia học cách phát triển các bảng quy trình, thông số kỹ thuật thiết bị và bố trí nhà máy, áp dụng các nguyên tắc truyền nhiệt, cơ học chất lỏng và nhiệt động lực học. Họ có được khả năng giải quyết độc lập các vấn đề thiết kế và áp dụng các phương pháp tiếp cận hệ thống để tối ưu hóa hiệu suất quy trình5.

  1. Chỉ định tốc độ dòng chất lỏng, nhiệt độ và nhiệm vụ nhiệt.

  2. Chọn loại bộ trao đổi nhiệt.

  3. Giả sử hệ số truyền nhiệt tổng thể.

  4. Tính chênh lệch nhiệt độ trung bình (LMTD).

  5. Xác định khu vực truyền nhiệt cần thiết.

  6. Quyết định bố trí bộ trao đổi (kích thước ống và vỏ, đường chuyền).

  7. Tính toán hệ số truyền nhiệt riêng lẻ cho các mặt ống và vỏ.

  8. Tính toán hệ số truyền nhiệt tổng thể và lặp lại nếu cần thiết.

  9. Tính toán giảm áp suất và điều chỉnh thiết kế nếu cần6.

Về bản chất, thiết kế thiết bị quy trình tích hợp kiến thức về các yêu cầu quy trình, nhiệt động lực học, dòng chất lỏng, truyền nhiệt, thiết kế cơ khí và các tiêu chuẩn an toàn để tạo ra thiết bị và bố trí nhà máy hiệu quả, đáng tin cậy và an toàn cho các ngành công nghiệp chế biến hóa chất.

Tổng quan này dựa trên tài liệu khóa học chi tiết và ghi chú bài giảng từ các chương trình kỹ thuật hóa học và sổ tay thiết kế quy trình1256.

🔧 Thiết kế thiết bị quy trình: Nơi độ chính xác gặp gỡ sự đổi mới 🧪

Đằng sau mỗi nhà máy chế biến hóa chất, dược phẩm hoặc thực phẩm hiệu quả là xương sống của các thiết bị được thiết kế thông minh. Là kỹ sư quy trình, chúng tôi không chỉ thiết kế bình chứa, bộ trao đổi nhiệt và lò phản ứng — chúng tôi thiết kế sự an toàn, khả năng mở rộng và tính bền vững vào từng chi tiết.

✅ Điều gì khiến thiết kế thiết bị quy trình trở nên quan trọng?
• An toàn là trên hết – Áp suất, nhiệt độ, ăn mòn và các yếu tố con người là những yếu tố không thể thương lượng.
• Hiệu quả quy trình – Tích hợp nhiệt, động lực dòng chảy và thời gian lưu trú ảnh hưởng trực tiếp đến sản lượng.
• Tuân thủ quy định – ASME, API, TEMA, v.v. – chúng tôi tuân thủ các quy tắc.
• Tính bền vững – Thiết kế tốt hơn có nghĩa là ít lãng phí, năng lượng và thời gian chết hơn.

🛠 Cho dù đó là cột chưng cất, bộ trao đổi nhiệt hay lò phản ứng áp suất cao, các quyết định thiết kế mà chúng ta đưa ra ngày hôm nay sẽ định hình hiệu suất và tác động của các nhà máy trong tương lai.

#ProcessEngineering #EquipmentDesign #ChemicalEngineering #PlantDesign #EngineeringExcellence #Sustainability #ASME #HeatExchangers #ProcessSafety #LinkedInEngineeringCommunity

Kỹ thuật quy trình, Thiết kế thiết bị, Kỹ thuật hóa học, Thiết kế nhà máy, Kỹ thuật xuất sắc, Tính bền vững, ASME, Bộ trao đổi nhiệt, An toàn quy trình, Cộng đồng kỹ thuật LinkedIn
(St.)
Kỹ thuật

Một WPS duy nhất có thể được hỗ trợ bởi nhiều hơn một PQR, theo quy định của ASME Phần IX

17

Một WPS duy nhất có thể được hỗ trợ bởi nhiều hơn một PQR, theo quy định của ASME Phần IX

Nguồn

app.aws.org yêu thích

app.aws.org
NHIỀU WPS VỚI MỘT PQR / NHIỀU PQR VỚI MỘT WPS

mewelding.com yêu thích

mewelding.com
Đủ điều kiện quy trình hàn theo ASME Phần IX

worldofndt.com yêu thích

Thế giới của NDT
WPS và PQR được thực hiện dễ dàng – Theo ASME Sec. IX – 2021

mewelding.com yêu thích

mewelding.com
Trường hợp thực hành 13 – Nhiều PQR cho WPS – mewelding.com

Theo quy định của ASME Phần IX, một Thông số kỹ thuật quy trình hàn (WPS) duy nhất thực sự có thể được hỗ trợ bởi nhiều hơn một Hồ sơ đánh giá quy trình (PQR). Điều này được cho phép rõ ràng và được thực hiện phổ biến trong ngành.

  • Một số WPS có thể được chuẩn bị từ dữ liệu trên một PQR duy nhất. Ví dụ, PQR tấm 1G có thể hỗ trợ WPS cho các vị trí hàn khác nhau như các vị trí phẳng (F), dọc (V), ngang (H) và trên cao (O) trên tấm hoặc đường ống, vì vị trí hàn không được coi là một biến số thiết yếu trong trình độ quy trình theo ASME IX123.

  • Ngược lại, một WPS cũng có thể bao gồm nhiều tập hợp hoặc phạm vi các biến thiết yếu, miễn là mỗi phạm vi biến thiết yếu được hỗ trợ bởi một PQR tương ứng. Ví dụ: WPS có thể bao phủ phạm vi độ dày từ 1/16 inch đến 1 1/4 inch nếu PQR tồn tại cho cả hai phạm vi độ dày trong phạm vi đó3.

  • Những thay đổi trong các biến thiết yếu thiết yếu hoặc bổ sung yêu cầu đủ điều kiện lại của WPS, có nghĩa là PQR mới hoặc bổ sung phải hỗ trợ những thay đổi đó3.

Tóm lại, ASME Phần IX cho phép linh hoạt trong đó nhiều WPS có thể được lấy từ một PQR duy nhất và một WPS duy nhất có thể được hỗ trợ bởi nhiều PQR, miễn là tất cả các biến thiết yếu đều được đủ điều kiện và ghi lại đúng cách. Cách tiếp cận này giúp tối ưu hóa các nỗ lực đánh giá trong khi đảm bảo tuân thủ các yêu cầu về quy tắc1243.

 

🔧 Mẹo hàn: Bạn có biết rằng một WPS duy nhất có thể được hỗ trợ bởi nhiều hơn một PQR theo quy định của ASME Mục IX không?

Hầu hết mọi người đều tin rằng mỗi WPS phải được hỗ trợ bằng một Bản ghi đủ điều kiện quy trình (PQR) duy nhất. Tuy nhiên, có một giải pháp thông minh hơn được cung cấp trong ASME Mục IX, QW-200.4(b) nêu rằng bạn có thể hỗ trợ WPS bằng nhiều PQR miễn là tuân thủ một số điều kiện quan trọng nhất định.

Sau đây là cách thức hoạt động:

✅ Các quy trình được phép:

Mỗi PQR phải được chứng nhận bằng một trong những quy trình sau:

GTAW, SMAW, GMAW, FCAW, PAW, SAW, LBW, LLBW hoặc kết hợp các quy trình được liệt kê.

✅ Độ dày tối thiểu:

Tất cả PQR phải được phát hành theo các phiếu thử nghiệm có độ dày tối thiểu là 13 mm (1/2 inch).

✅ Ứng dụng trên WPS:

Có thể sử dụng một PQR cho lớp gốc, cho phép các lớp hàn có độ dày lên đến 2t (gấp đôi độ dày của phiếu).

Có thể sử dụng các PQR khác cho các lớp lấp đầy, chứng nhận lên đến độ dày kim loại cơ bản mà các PQR đó hỗ trợ.

Phương pháp này cho phép:

✔️ Tăng cường tính linh hoạt của quy trình (ví dụ: gốc GTAW và lớp phủ SAW)

✔️ Nâng cao năng suất mà không ảnh hưởng đến chất lượng

✔️ Tuân thủ tiết kiệm chi phí cho các mối hàn tiết diện dày.

📘 Tài liệu tham khảo: ASME BPVC Phần IX, QW-200.4(b) + ghi chú QW-451

🔍 Bạn có đang cố gắng cải thiện kỹ thuật hàn của mình không? Đừng quên rằng có thể kết hợp các PQR đủ tiêu chuẩn – và quy định cho phép điều đó!

#Welding #ASME #WPS #PQR #WeldingEngineering #Fabrication #Manufacturing #QualityControl #WeldingStandards

Hàn, ASME, WPS, PQR, Kỹ thuật hàn, Chế tạo, Sản xuất, Kiểm soát chất lượng, Tiêu chuẩn hàn
(St.)
Kỹ thuật

Nhãn ASME

21

Nhãn ASME

Nguồn
Asmedotorg
Chứng nhận nồi hơi và bình chịu áp lực – ASME

palagroup.com favicon

Tập đoàn PALA
Mã bình áp lực ASME: Hiểu tem U, U2, R & S

yenaengineering.nl yêu thích

Kỹ thuật YENA
Tem ASME và tầm quan trọng của nó đối với bình chịu áp lực

watlow.com yêu thích

Watlow
[PDF] Tem và định nghĩa mã ASME – Watlow
Chứng nhận bình áp lực, tem ASME và U1As
Ý nghĩa và yêu cầu của tem ASME U trên bình chịu áp lực ...
Dấu chứng nhận UV, U, V (ASME VIII) – AMARINE
Tem ASME U và R Stamp: Tầm quan trọng của chúng là gì?

Nhãn ASME đề cập đến dấu chứng nhận do Hiệp hội Kỹ sư Cơ khí Hoa Kỳ (ASME) cung cấp cho các nhà sản xuất nồi hơi, bình chịu áp lực và các thiết bị liên quan đáp ứng các tiêu chuẩn chất lượng và an toàn nghiêm ngặt được nêu trong Bộ luật nồi hơi và bình chịu áp lực ASME (BPVC). Tem này chứng nhận rằng sản phẩm tuân thủ các yêu cầu thiết kế, chế tạo, kiểm tra và thử nghiệm của ASME.

  • : Đây là tem ASME phổ biến nhất cho bình chịu áp lực. Nó chứng nhận rằng bình chịu áp lực đã được thiết kế, chế tạo, kiểm tra và thử nghiệm theo tiêu chuẩn ASME BPVC Phần VIII. Để có được con dấu này, các nhà sản xuất phải đáp ứng các yêu cầu nghiêm ngặt như sử dụng nguyên liệu thô được chỉ định, thợ hàn được chứng nhận và trải qua các cuộc đánh giá thường xuyên ba năm một lần bởi đại diện hội đồng quốc gia136.

  • Con : Tương tự như Tem chữ U nhưng áp dụng cho các bình chịu áp lực được thiết kế theo Mục VIII Mục 2 của BPVC, cung cấp các quy tắc thiết kế thay thế2.

  • : Áp dụng cho nồi hơi điện hoạt động ở áp suất vượt quá 15 psig hoặc nhiệt độ trên 250 ° F. Nó chứng nhận tuân thủ BPVC Phần I24.

  • : Để sưởi ấm nồi hơi hoạt động ở áp suất và nhiệt độ thấp hơn, theo BPVC Phần IV4.

  • : Đối với các thành phần được sử dụng trong các cơ sở hạt nhân, theo BPVC Mục III4.

  • : Chứng nhận cho các nhà sản xuất vật liệu đạt tiêu chuẩn ASME, đảm bảo chất lượng và tính nhất quán của nguyên liệu sử dụng trong chế tạo5.

  • : Được cấp bởi Hội đồng Thanh tra Nồi hơi và Bình chịu áp lực Quốc gia (NBBI), con dấu này cho phép các tổ chức sửa chữa và thay đổi thiết bị giữ áp, bao gồm nồi hơi và bình chịu áp lực. Người nhận phải chứng minh sự thành thạo về hàn, vật liệu và kiểm tra, đồng thời tuân thủ các quy trình và đánh giá được lập thành văn bản27.

  • : Dập ASME đảm bảo rằng các nhà sản xuất tuân thủ các hệ thống kiểm soát chất lượng nghiêm ngặt, bao gồm thông số kỹ thuật vật liệu, tiêu chuẩn hàn và quy trình kiểm tra36.

  • : Con dấu biểu thị việc tuân thủ các tiêu chuẩn an toàn, giảm nguy cơ hỏng hóc trong thiết bị áp lực, điều này rất quan trọng trong các ngành công nghiệp như sản xuất điện, xử lý hóa chất và năng lượng hạt nhân15.

  • : Nhiều khu vực pháp lý và ngành công nghiệp yêu cầu thiết bị được đóng dấu ASME cho mục đích pháp lý và bảo hiểm, khiến nó trở nên cần thiết để tiếp cận thị trường16.

  • : Con tem hoạt động như một dấu hiệu của độ tin cậy và tính chuyên nghiệp, đảm bảo với khách hàng và cơ quan quản lý rằng thiết bị đáp ứng các tiêu chuẩn được quốc tế công nhận7.

Các nhà sản xuất tìm kiếm chứng nhận ASME thường trải qua quy trình bốn bước: chuẩn bị, đăng ký, đánh giá (bao gồm đánh giá và kiểm tra) và chứng nhận. Sau khi được chứng nhận, họ có thể áp dụng tem ASME thích hợp cho sản phẩm của mình8.


Tóm lại, Nhãn ASME là một dấu chứng nhận quan trọng chứng minh sự tuân thủ của nhà sản xuất với Mã nồi hơi và bình chịu áp lực ASME, đảm bảo chất lượng, an toàn và sự chấp nhận theo quy định của bình chịu áp lực, nồi hơi và các thiết bị liên quan. Các tem khác nhau tương ứng với các loại thiết bị và chứng nhận khác nhau, với Tem U là phổ biến nhất cho bình chịu áp lực. Quá trình này bao gồm kiểm soát chất lượng nghiêm ngặt và đánh giá định kỳ để duy trì chứng nhận1236.

 

✅ Nhãn ASME là gì?
Nhãn ASME chứng nhận rằng một thiết bị chịu áp suất đã được thiết kế, chế tạo, kiểm tra và thử nghiệm theo đúng Bộ luật nồi hơi và bình chịu áp suất ASME (BPVC) hiện hành. Đây là tuyên bố của nhà sản xuất và xác nhận của Thanh tra viên được ủy quyền (AI) rằng sản phẩm tuân thủ bộ luật và an toàn khi sử dụng

✅ Tại sao nó lại quan trọng đến vậy?

🔹Yêu cầu pháp lý: Nhiều quốc gia và tiểu bang Hoa Kỳ yêu cầu thiết bị có đóng dấu ASME để vận hành
🔹Sự chấp thuận của khách hàng: Các tàu và đường ống có đóng dấu ASME thường là điều kiện tiên quyết trong các hợp đồng EPC lớn
🔹Bảo hiểm & Giảm thiểu rủi ro: Các công ty bảo hiểm và kiểm toán viên yêu cầu bằng chứng tuân thủ quy định
🔹Khả năng truy xuất nguồn gốc & Tài liệu: Mỗi mặt hàng có đóng dấu ASME đều có hồ sơ giấy tờ—thiết kế, vật liệu, mối hàn, kiểm tra và thử nghiệm—tất cả đều có thể truy xuất nguồn gốc

✅ Ai có thể áp dụng Dấu ASME?
Chỉ những nhà sản xuất có:
🔹Giấy chứng nhận ủy quyền của ASME
🔹Hệ thống kiểm soát chất lượng đang hoạt động và được ASME đánh giá
🔹Đã vượt qua thành công Đánh giá chung với ASME và Cơ quan kiểm tra được ủy quyền của họ

✅ Quy trình bao gồm những gì?

🔹Xác thực thiết kế: Dựa trên các tính toán của mã ASME, có tính đến MAWP, MDMT, dung sai ăn mòn, v.v.
🔹Khả năng truy xuất nguồn gốc vật liệu: Chỉ sử dụng các vật liệu được ASME chấp thuận (cấp SA/ASTM) có Chứng chỉ thử nghiệm nhà máy hợp lệ
🔹Kiểm soát hàn: Tất cả các mối hàn phải theo Mục IX của ASME, với thợ hàn đủ tiêu chuẩn và WPS/PQR được chấp thuận
🔹Kiểm tra NDT & Áp suất: Chụp X-quang (RT), Siêu âm (UT), Thẩm thấu (PT), Hạt từ (MT) và các thử nghiệm thủy tĩnh/khí nén, có sự chứng kiến ​​của AI
🔹Kiểm tra cuối cùng & MDR: Báo cáo dữ liệu của nhà sản xuất được AI chuẩn bị, xem xét và ký. Chỉ khi đó, con dấu mới có thể được dán

✅ Con dấu ASME phổ biến và nơi áp dụng:
🔹Con dấu “U”: Bình chịu áp suất theo Mục VIII Div.1
🔹Con dấu “U2”: Bình chịu áp suất theo Mục VIII Div.2 (phân tích thiết kế chi tiết hơn)
🔹Con dấu “S”: Nồi hơi công suất theo Mục I
🔹Con dấu “PP”: Đường ống bên ngoài nồi hơi theo B31.1
🔹Con dấu “R”: Sửa chữa và thay đổi (do Hội đồng quốc gia ủy quyền, không phải ASME)
🔹Con dấu “N” / “NPT” / “NV”: Linh kiện hạt nhân theo Mục III

✅ Những điều cần thiết về biển tên:
Bao gồm ký hiệu con dấu ASME, thông tin chi tiết về nhà sản xuất, năm sản xuất, áp suất và nhiệt độ thiết kế, áp suất thử nghiệm, số sê-ri và tùy chọn là số Hội đồng quốc gia

Krishna Nand Ojha

ASME, Quản lý chất lượng, Kỹ thuật cơ khí, Bình áp suất, BoilerCode, Hàn, NDT, Đường ống, Vận hành, Dầu khí, QMS, LinkedIn Learning

(St.)
Kỹ thuật

Lựa chọn mặt bích & vật liệu 

31

Lựa chọn mặt bích & vật liệu

Nguồn
Ống Thép Đúc Bảo Tín
7 Loại mặt bích phổ biến trên thị trường
ongvietuc.com
Mặt bích là gì? Cấu tạo, phân loại và ứng dụng trong thực tế
Viva – Van công nghiệp giá rẻ
Mặt bích là gì? | Tiêu chuẩn mặt bích JIS, JIS, BS, DIN, ANSI, ASME …
MẶT BÍCH THÉP KHÔNG GỈ LONGAN
Nhà sản xuất mặt bích thép không gỉ công nghiệp – Longan Flange
Mặt bích là gì? Các loại mặt bích thông dụng
Mặt bích là gì? Tổng hợp các loại mặt bích phổ biến 2025
Mặt bích, Mặt bích các loại, Mặt bích gang, Mặt bích inox ...
Các loại mặt bích phổ biến và cách lựa chọn phù hợp – Ống ...

Khi lựa chọn mặt bích và vật liệu cho các dự án EPC (Engineering, Procurement, Construction) và công nghiệp, cần cân nhắc kỹ các yếu tố về loại mặt bích, vật liệu chế tạo, tiêu chuẩn kỹ thuật, môi trường làm việc và yêu cầu áp suất, nhiệt độ của hệ thống.

Các loại mặt bích phổ biến bao gồm:

  • : chịu áp lực cao, kết nối chắc chắn, thường dùng trong các hệ thống áp suất lớn.

  • : dễ lắp đặt, áp lực trung bình.

  • : dễ tháo lắp, không dùng cho áp suất cao.

  • : dùng để bịt đầu ống.

  • : dùng cho đường ống nhỏ, áp suất cao.

  • : dùng trong các hệ thống cần tháo lắp thường xuyên1.

Lựa chọn loại mặt bích phụ thuộc vào áp suất, nhiệt độ, không gian lắp đặt và yêu cầu kỹ thuật của dự án.

Vật liệu mặt bích phải phù hợp với môi trường làm việc, tính chất lưu chất, áp suất và nhiệt độ:

  • : phổ biến, giá thành hợp lý, chịu lực tốt, dùng trong các hệ thống công nghiệp nặng như dầu khí, hóa chất, sản xuất năng lượng23.

  • : có khả năng chống ăn mòn cao, phù hợp với môi trường ẩm ướt, hóa chất, thực phẩm, dược phẩm. Các loại inox phổ biến là 304, 316L, 2205 (duplex), 2507 (super duplex). Trong đó, 316L có thêm molypden giúp chống ăn mòn mạnh hơn 304, thích hợp cho môi trường khắc nghiệt; 2205 có độ bền cao và chống ăn mòn tốt hơn inox thường; 2507 là loại siêu chống ăn mòn, dùng cho môi trường cực kỳ khắc nghiệt như giàn khoan ngoài khơi4.

  • : giá rẻ, dễ chế tạo, chịu lực tốt nhưng không chịu được ăn mòn và nhiệt độ cao, phù hợp cho các ứng dụng không yêu cầu áp lực và nhiệt độ cao như cấp thoát nước52.

  • : nhẹ, dẻo, chống ăn mòn tốt, dễ gia công, dùng trong các ứng dụng không yêu cầu áp lực và nhiệt độ cao, giá thành cao hơn gang và thép5.

  • : chịu ăn mòn tốt, dễ gia công, dùng trong môi trường ăn mòn cao, giá thành cao hơn gang và nhôm5.

  • : nhẹ, chống ăn mòn tốt, giá thành thấp, dùng cho hệ thống cấp nước sạch và dẫn hóa chất nhẹ, không chịu được áp lực và nhiệt độ cao52.

  • Chọn mặt bích theo tiêu chuẩn kỹ thuật phù hợp như ASME, ANSI, DIN, JIS, BS để đảm bảo tương thích với hệ thống3.

  • Xác định kích thước đường ống, áp suất và nhiệt độ làm việc để chọn loại mặt bích và vật liệu phù hợp3.

  • Đảm bảo khoảng cách bu lông, kích thước và kiểu kết nối phù hợp với thiết bị và hệ thống.

  • Lựa chọn nhà sản xuất uy tín, có chứng nhận chất lượng và hỗ trợ kỹ thuật3.

Việc lựa chọn mặt bích và vật liệu cho các dự án EPC và công nghiệp cần dựa trên:

  • Loại mặt bích phù hợp với áp lực, nhiệt độ và yêu cầu tháo lắp.

  • Vật liệu mặt bích tương thích với môi trường làm việc, lưu chất, áp suất và nhiệt độ.

  • Tiêu chuẩn kỹ thuật và kích thước phù hợp.

  • Chi phí tổng thể bao gồm mua sắm, lắp đặt và bảo trì.

Điều này giúp đảm bảo an toàn, hiệu quả vận hành và tuổi thọ của hệ thống đường ống trong các dự án công nghiệp14523.

 

🔍Hướng dẫn lựa chọn mặt bích và vật liệu cho các dự án EPC và công nghiệp
Mặt bích là thành phần không thể thiếu trong hệ thống đường ống, cho phép lắp ráp, bảo trì và đảm bảo tính toàn vẹn của áp suất. Việc lựa chọn đúng loại và vật liệu mặt bích đảm bảo an toàn, độ bền và tuân thủ các yêu cầu thiết kế.

1. Các loại và ứng dụng mặt bích
🔹Weld Neck (WN): Có một trục côn dài và được hàn đối đầu với đường ống. Tuyệt vời cho các ứng dụng áp suất cao và nhiệt độ cao do phân bổ ứng suất vượt trội.
🔹Slip-On (SO): Ống trượt vào mặt bích và được hàn góc bên trong và bên ngoài. Thường được sử dụng cho các dịch vụ áp suất thấp đến trung bình với việc lắp đặt dễ dàng hơn.
🔹Socket Weld (SW): Thích hợp cho các đường ống có lỗ nhỏ, trong đó đường ống vừa với ổ cắm và được hàn góc bên ngoài. Thích hợp cho các hệ thống áp suất cao trong không gian chật hẹp.

🔹Lap Joint (LJ): Hoạt động với các đầu cụt cho phép mặt bích xoay tự do, lý tưởng khi cần tháo dỡ thường xuyên.
🔹Ren (THD): Vặn chặt vào đường ống mà không cần hàn. Được sử dụng trong các ứng dụng áp suất thấp, không quan trọng khi không thể hàn.
🔹Blind (BL): Mặt bích đặc không có lỗ, được sử dụng để bịt kín các đầu ống hoặc lỗ mở trên bình chịu áp suất, cho phép kiểm tra và bảo trì.
🔹Mặt bích Orifice: Được thiết kế để chứa các tấm lỗ để đo lưu lượng trong đường ống.
🔹Long Weld Neck (LWN): Mặt bích cổ mở rộng thường được sử dụng trong vòi phun bình và bộ trao đổi nhiệt để tăng thêm khả năng hỗ trợ.

2. Lựa chọn vật liệu
Vật liệu mặt bích phải phù hợp với vật liệu đường ống và tương thích với môi trường vận hành — áp suất, nhiệt độ và khả năng ăn mòn.
🔹Thép cacbon (ASTM A105, A350 LF2): Được sử dụng rộng rãi cho các ứng dụng dầu khí, nước và hơi nước nói chung.
🔹Thép không gỉ (304, 316): Thích hợp cho môi trường ăn mòn bao gồm các ngành công nghiệp hóa chất và ngoài khơi.
🔹Thép không gỉ Duplex và Super Duplex: Khả năng chống ăn mòn tuyệt vời đối với clorua, được sử dụng rộng rãi trong các ứng dụng nước biển và hàng hải.
🔹Thép hợp kim (F11, F22): Được lựa chọn cho nhiệt độ và áp suất cao trong các nhà máy lọc dầu và nhà máy điện.
🔹Hợp kim niken (Inconel, Monel): Được sử dụng cho các điều kiện ăn mòn cao và đông lạnh.
🔹Hợp kim đồng: Thích hợp cho các hệ thống nước biển và hàng hải.
Phi kim loại (PVC, FRP): Được sử dụng trong các đường ống áp suất thấp, hóa chất hoặc nước.

3. Tiêu chuẩn & Xếp hạng áp suất
🔹ASME B16.5 quản lý các mặt bích có đường kính lên đến 24”, trong khi ASME B16.47 bao gồm các kích thước lớn hơn.
🔹Các lớp áp suất dao động từ 150 đến 2500, tương ứng với các giới hạn áp suất và nhiệt độ khác nhau.
🔹Việc lựa chọn phải tuân theo xếp hạng Áp suất-Nhiệt độ (P-T) thiết kế để đảm bảo an toàn và tuân thủ.

Krishna Nand Ojha

Lựa chọn mặt bích, Kỹ thuật vật liệu, Thiết kế đường ống, Dự án EPC, Dầu khí, Hàn, ASME, QAQC, Quản lý dự án
(St.)
Kỹ thuật

Tính toán co ASME B16.9 bằng UG-27, Phụ lục 1-1

28

Tính toán co ASME B16.9 bằng UG-27, Phụ lục 1-1

Nguồn
Tính toán độ dày khuỷu tay – Kỹ thuật nồi hơi và bình áp lực
Randall Bogard, PE | 12 bình luận – LinkedIn
ASME B16.9 Hoàn thành | PDF – Viết
Tại sao Phụ lục 1-1 được sử dụng thay cho UG-27 cho độ dày yêu cầu …

Để tính toán độ dày cần thiết của co ASME B16.9 bằng cách sử dụng ASME Phần VIII Phân khu 1 UG-27 và Phụ lục 1-1, đây là giải thích ngắn gọn:

Phương pháp UG-27 (ASME Phần VIII Div 1)

  • UG-27 cung cấp các công thức để tính toán độ dày yêu cầu tối thiểu của vỏ cong như co dưới áp lực bên trong.

  • Công thức tính đến bán kính cong và đường kính của khuỷu tay.

  • Phương pháp này thường được sử dụng cho các bộ phận và phụ kiện bình chịu áp lực như co.

  • Độ dày được tính toán không bao gồm phụ cấp ăn mòn và dung sai sản xuất.

Phụ lục 1-1 (ASME Phần VIII Div 1)

  • Phụ lục 1-1 cung cấp dữ liệu và công thức lập bảng cho các yêu cầu về độ dày tối thiểu đối với vỏ được chỉ định theo đường kính ngoài.

  • Nó có thể được sử dụng như một giải pháp thay thế cho UG-27.

  • Theo kinh nghiệm trong ngành, Phụ lục 1-1 có thể yêu cầu thêm độ dày so với UG-27 đối với co, dẫn đến thiết kế thận trọng hơn24.

Lưu ý thực tế

  • Hầu hết các kỹ sư tính toán độ dày khuỷu tay ASME B16.9 bằng cách sử dụng UG-27.

  • Phụ lục 1-1 ít được sử dụng phổ biến hơn nhưng có thể được áp dụng khi được chỉ định hoặc để bổ sung độ dày2.

  • Đối với khuỷu tay, các yếu tố như kích thước ống danh nghĩa (NPS), đường kính ngoài, bán kính cong và áp suất là đầu vào chính.

  • Tiêu chuẩn ASME B16.9 cung cấp dữ liệu kích thước cho khuỷu tay (từ tâm đến cuối, bán kính, v.v.) cần thiết cho các tính toán này56.

Các bước tổng hợp để tính toán

  1. Lấy kích thước ống danh nghĩa (NPS), đường kính ngoài và bán kính cong của khuỷu tay từ ASME B16.9.

  2. Sử dụng công thức UG-27 để tính độ dày dựa trên áp suất bên trong, ứng suất cho phép và các thông số hình học.

  3. Ngoài ra, hãy sử dụng các công thức hoặc bảng Phụ lục 1-1 để tìm độ dày tối thiểu nếu được chỉ định.

  4. Thêm phụ cấp ăn mòn và dung sai sản xuất nếu có.

Cách tiếp cận này đảm bảo tuân thủ các yêu cầu của ASME Phần VIII Phân khu 1 đối với khuỷu tay giữ áp trên mỗi phụ kiện ASME B16.9245.

Nếu bạn cần các công thức chính xác từ UG-27 hoặc Phụ lục 1-1, chúng được trình bày chi tiết trong các tài liệu mã ASME Phần VIII Phân khu 1, trong đó chỉ định các biểu thức toán học cho độ dày dựa trên lý thuyết vỏ và nguyên tắc thiết kế bình chịu áp lực.

 

Bạn có muốn sử dụng co ASME B16.9 làm các thành phần chứa áp suất chính không? Hãy nhớ coi chúng như ống liền mạch và tính độ dày cần thiết theo đường kính ngoài. Điều này có nghĩa là sử dụng Phụ lục 1-1 thay vì UG-27 cho áp suất bên trong trong Div. 1.

Các mặt bích và phụ kiện ống tiêu chuẩn ASME có sẵn thường được sử dụng làm các thành phần chứa áp suất chính trong bình chịu áp suất và bộ trao đổi nhiệt. Sự khác biệt lớn nhất trong cách tiếp cận khi nghiên cứu các phép tính khuỷu tay ASME B16.9. Một số kỹ sư thiết kế tin rằng co ASME B16.9 không yêu cầu bất kỳ phép tính nào. Những người khác tính toán co ASME B16.9 bằng UG-27. Rất ít người sử dụng Phụ lục 1-1.

Lưu ý rằng Phụ lục 1-1 có thể yêu cầu độ dày bổ sung so với UG-27. Vui lòng tham khảo UG-44 để biết thêm thông tin về tính toán mặt bích tiêu chuẩn và phụ kiện đường ống.


#PressureVessel
#ASME
#Pipe
#Piping
#COMPRESS

Bình áp suất, ASME, Ống, Đường Ống, NÉN

(St.)
Kỹ thuật

Tiêu chí chấp nhận NDT trong các ngành công nghiệp

29

Tiêu chí chấp nhận NDT trong các ngành công nghiệp

Nguồn
Linkedin
Tiêu chí chấp nhận NDT trong các ngành công nghiệp | Nidhin Koroth đã đăng …
Tiêu chí chấp nhận NDT cho các thành phần khác nhau – LinkedIn
Tiêu chí chấp nhận NDT cho các thành phần khác nhau | PDF – Viết
Ndt
[PDF] Quan niệm sai lầm về Tiêu chí chấp nhận tay nghề NDT cho …

Tiêu chí chấp nhận NDT (Thử nghiệm không phá hủy) khác nhau giữa các ngành nhưng thường phục vụ mục đích đảm bảo chất lượng, tính toàn vẹn và an toàn của vật liệu và linh kiện mà không gây hư hỏng. Các tiêu chí này được xác định bởi mã ngành, tiêu chuẩn và thông số kỹ thuật của dự án, và chúng khác nhau tùy thuộc vào phương pháp NDT được sử dụng, loại thành phần và lĩnh vực công nghiệp.

Tổng quan chung về tiêu chí chấp nhận NDT trong các ngành

  • Tiêu chí chấp nhận NDT là điều cần thiết để kiểm soát chất lượng và đảm bảo an toàn trong các ngành công nghiệp như dầu khí, hàng không vũ trụ, sản xuất, đóng tàu, đường ống, bình chịu áp lực và hệ thống đường ống.

  • Các tiêu chí quy định các giới hạn cho phép đối với các sai sót, khuyết tật hoặc bất thường được phát hiện trong quá trình kiểm tra để quyết định xem một thành phần được chấp nhận hay từ chối.

  • Chúng dựa trên các quy tắc và tiêu chuẩn được công nhận được phát triển bởi các hiệp hội nghề nghiệp như ASME (Hiệp hội Kỹ sư Cơ khí Hoa Kỳ), API (Viện Dầu khí Hoa Kỳ), AWS (Hiệp hội Hàn Hoa Kỳ), ASTM (Hiệp hội Thử nghiệm và Vật liệu Hoa Kỳ), ISO (Tổ chức Tiêu chuẩn hóa Quốc tế) và các tổ chức khác.

  • Tiêu chí chấp nhận liên tục được cải tiến để thích ứng với tiến bộ công nghệ, thay đổi quy định và nhu cầu của ngành, đảm bảo độ tin cậy và an toàn trong kiểm tra25.

Tiêu chí chấp nhận theo ngành và phương pháp NDT

Bình áp lực

  • Kiểm tra X quang (RT), Kiểm tra siêu âm (UT), Kiểm tra thâm nhập (PT), Kiểm tra hạt từ tính (MT), Kiểm tra trực quan (VT) và Kiểm tra rò rỉ (LT) được điều chỉnh chủ yếu bởi ASME Phần VIII và Phần V với các phụ lục bắt buộc cụ thể nêu chi tiết các tiêu chí chấp nhận.

  • Ví dụ: ASME Sec.VIII cung cấp các phụ lục bắt buộc chi tiết cho các tiêu chí chấp nhận RT, UT, PT và MT2.

Quy trình đường ống

  • ASME B31.3 là mã chính để kiểm tra quy trình đường ống.

  • Các tiêu chí chấp nhận cho RT, UT, PT, MT, VT và LT được quy định trong các bảng và đoạn văn khác nhau trong ASME B31.3, đảm bảo đánh giá nhất quán các lỗi trong hệ thống đường ống2.

Van (Mặt bích, Ren, Đầu hàn)

  • ASME B16.34 cung cấp các tiêu chí chấp nhận cho RT, UT, PT, MT và VT.

  • Tiêu chí Kiểm tra rò rỉ có thể không được quy định rõ ràng trong tiêu chuẩn này và có thể yêu cầu các hướng dẫn cụ thể của dự án2.

Đường ống

  • API 1104 là tiêu chuẩn chính cho tiêu chí chấp nhận NDT đường ống.

  • Nó trình bày chi tiết các điều khoản cho RT, UT, PT, MT và VT, với kiểm tra rò rỉ thường không được chỉ định.

  • Tiêu chuẩn này được sử dụng rộng rãi trong kiểm tra đường ống dẫn dầu khí để đảm bảo tính toàn vẹn và an toàn của cấu trúc2.

Công nghiệp hàng không vũ trụ (Ví dụ cho UT)

  • ASTM E2375 và các thông số kỹ thuật vật liệu hàng không vũ trụ như AMS 2630 chi phối các tiêu chí chấp nhận thử nghiệm siêu âm đối với các bộ phận hàng không vũ trụ, chẳng hạn như trục.

  • Các tiêu chí này rất nghiêm ngặt để đảm bảo an toàn và hiệu suất trong các cấu trúc hàng không vũ trụ quan trọng5.

Nghề đóng tàu

  • Các yêu cầu về NDT dựa trên các tiêu chuẩn ISO như ISO 9712 cho trình độ nhân sự và ISO 17640, ISO 23279, ISO 11666 cho quy trình kiểm tra siêu âm và mức độ chấp nhận.

  • Kiểm tra trực quan (VT), Kiểm tra thâm nhập chất lỏng (PT), Kiểm tra hạt từ tính (MT), Kiểm tra chụp X quang (RT) và Kiểm tra siêu âm (UT) được thực hiện theo các tiêu chuẩn đã được thống nhất giữa các công ty đóng tàu và các hiệp hội phân loại như IRS (Sổ đăng ký vận chuyển Ấn Độ).

  • Các mức độ chấp nhận kiểm tra mối hàn bao gồm các vùng vật liệu mối hàn và vật liệu mẹ, với các quy trình chi tiết và trình độ giám sát được chỉ định để đảm bảo chất lượng cao7.

Ví dụ về tiêu chí chấp nhận cụ thể

Kiểm tra siêu âm (UT)

  • Tiêu chí chấp nhận xác định kích thước, loại và giới hạn vị trí lỗi.

  • Các tiêu chuẩn như AWS D1.1 và ASME Sec VIII Div 1 được sử dụng.

  • Cải tiến liên tục các tiêu chí giúp thích ứng với vật liệu và công nghệ mới, đảm bảo an toàn và tuân thủ5.

Kiểm tra chất xâm nhập chất lỏng (PT)

  • Tiêu chí nghiệm thu phụ thuộc vào điều kiện dịch vụ và đánh giá của kỹ sư dự án.

  • Các tiêu chuẩn như ISO 3452-1:2013 và các mã từ các tổ chức như Det Norske Veritas (DNV) và Germanischer Lloyd (GL) quy định các tiêu chí từ chối đối với các chỉ định giống như vết nứt và tròn.

  • Ví dụ, các dấu hiệu giống như vết nứt trong đường ống ngầm bị loại bỏ và các chỉ báo tròn dưới đường kính nhất định có thể được chấp nhận hoặc từ chối dựa trên cụm và kích thước6.

Bảng tóm tắt các tiêu chuẩn chính và ứng dụng của chúng

Ngành/Thành phần (Các) Phương pháp NDT Tiêu chuẩn / Mã chính Ghi chú
Bình áp lực RT, UT, PT, MT, VT, LT ASME Sec.V, Sec.VIII Phụ lục bắt buộc chi tiết
Quy trình đường ống RT, UT, PT, MT, VT, LT ASME B31.3 Bảng và đoạn văn chỉ định tiêu chí
Van RT, UT, PT, MT, VT ASME B16.34 Kiểm tra rò rỉ thường không được chỉ định
Đường ống RT, UT, PT, MT, VT API 1104 Kiểm tra rò rỉ thường không được chỉ định
Linh kiện hàng không vũ trụ UT Tiêu chuẩn ASTM E2375, AMS 2630 Tiêu chí nghiêm ngặt cho các bộ phận quan trọng
Nghề đóng tàu VT, PT, MT, RT, UT Yêu cầu ISO 9712, ISO 17640, IRS Chứng nhận nhân sự và thủ tục chi tiết

Kết luận

Tiêu chí chấp nhận NDT trong các ngành được xác định bởi sự kết hợp của các tiêu chuẩn quốc tế và tiêu chuẩn cụ thể của ngành phù hợp với vật liệu, linh kiện và điều kiện dịch vụ liên quan. Chúng đảm bảo rằng các lỗi được phát hiện được đánh giá nhất quán để duy trì sự an toàn, độ tin cậy và tuân thủ. Các tiêu chí này được cập nhật thường xuyên để kết hợp các tiến bộ công nghệ và thay đổi quy định, hỗ trợ cải tiến liên tục trong thực hành kiểm tra và đảm bảo chất lượng2567.

🔍Nắm vững Tiêu chí chấp nhận NDT trong các ngành công nghiệp – Điều bắt buộc phải biết đối với các chuyên gia QA/QC🔍
Cho dù bạn đang kiểm tra bình chịu áp suất, hệ thống đường ống, van hay đường ống xuyên quốc gia, việc hiểu đúng tiêu chí chấp nhận Kiểm tra không phá hủy (NDT) là rất quan trọng để đảm bảo chất lượng, tuân thủ và—quan trọng nhất—an toàn.
Là các kỹ sư và thanh tra QA/QC, chúng tôi thường phải đối mặt với nhiều yêu cầu về mã trong ASME, API và các tiêu chuẩn quốc tế khác.

Sau đây là bản tóm tắt nhanh nhưng chi tiết để giúp bạn nắm rõ:
✅ Bình chịu áp suất – Được quản lý bởi ASME Mục VIII, những bình này đòi hỏi phải NDT nghiêm ngặt trên nhiều phương pháp:
🔹Kiểm tra bằng tia X (RT): Phụ lục 8-4 bắt buộc, Điều khoản 4-3 để kiểm tra tính toàn vẹn của mối hàn.
🔹Kiểm tra siêu âm (UT): Phụ lục 12-3 để kiểm tra độ dày và các khuyết tật bên trong.
🔹Kiểm tra thẩm thấu (PT): Các vết nứt phá vỡ bề mặt được kiểm soát theo Phụ lục 8-4.
🔹Kiểm tra hạt từ (MT): Đối với các lỗi vật liệu sắt từ, Phụ lục 6-4 được áp dụng
🔹Kiểm tra trực quan (VT): Kiểm tra mối hàn và chế tạo theo UW-35
🔹Kiểm tra rò rỉ (LT): Tính toàn vẹn của ranh giới áp suất được xác minh theo ASME Mục V, Điều 10
🔹Rò rỉ từ thông (MFL): Được sử dụng như một công cụ sàng lọc, tiêu chí theo Phụ lục 6-4

✅ Hệ thống đường ống (Quy trình) – Theo ASME B31.3, tiêu chí chấp nhận khác nhau tùy theo loại dịch vụ:
🔹RT & VT: Tham khảo Bảng 341.3.2 để biết loại khuyết tật, kích thước và vị trí
🔹UT: Đoạn 344.6.2 định nghĩa cách đánh giá khuyết tật thay cho RT
🔹PT/MT: Đoạn 344.4.2 nêu rõ giới hạn kích thước khuyết tật; các chỉ báo tuyến tính và cụm là rất quan trọng
🔹LT: Kiểm tra thủy tĩnh và khí nén theo Mục 345.2.2(a) đảm bảo độ kín không bị rò rỉ

✅ Van (Mặt bích, Ren & Đầu hàn) – ASME B16.34 tập trung vào tính toàn vẹn cơ học:
🔹RT: Phụ lục I nêu chi tiết về chấp nhận khuyết tật bên trong trong các thành phần đúc/hàn
🔹UT: Phụ lục IV quản lý các mức chấp nhận siêu âm
🔹PT/MT: Các vết nứt hoặc bất thường là không thể chấp nhận theo Phụ lục II & III
🔹LT & VT: Thường được API 598 bổ sung, mặc dù B16.34 không định nghĩa rõ ràng các tiêu chí

✅ Đường ống – API 1104 là tiêu chuẩn áp dụng cho mối hàn xuyên quốc gia và tại hiện trường:
🔹RT (Điều khoản 9.3) và UT (Điều khoản 9.6): Chấp nhận dựa trên kích thước và vị trí khuyết tật
🔹MT/PT: Các khuyết tật bề mặt và dưới bề mặt được đánh giá theo Điều khoản 9.4 và 9.5
🔹VT (Điều khoản 9.7): Theo dõi chặt chẽ tình trạng cốt thép, cắt xén và bề mặt
🔹LT: Thường được quyết định bởi thông số kỹ thuật của dự án hoặc tham chiếu đến ASME B31.8

🔗 Luôn kiểm tra chéo các yêu cầu cụ thể của dự án, phiên bản mã và tiêu chuẩn của khách hàng để duy trì sự tuân thủ và tự tin

Krishna Nand Ojha

 Govind Tiwari,PhD
#NDT #QAQC #PressureVessel #Piping #WeldingInspection #API1104 #ASME #QualityControl #OilAndGas #Inspection #Engineering #VisualTesting #UltrasonicTesting #Radiography #ProjectQuality #PipelineInspection #MechanicalEngineering

NDT, QAQC, Bình chịu áp lực, Đường ống, Kiểm tra hàn, API1104, ASME, Kiểm soát chất lượng, Dầu khí, Kiểm tra, Kỹ thuật, Kiểm tra bằng mắt, Kiểm tra siêu âm, Chụp X quang, Chất lượng dự án, Kiểm tra đường ống, Kỹ thuật cơ khí


(St.)
Kỹ thuật

Tiêu chuẩn API 572 do Viện Dầu khí Hoa Kỳ (API) công bố có tiêu đề “Kiểm tra bình chịu áp lực”

28

Tiêu chuẩn API 572 do Viện Dầu khí Hoa Kỳ (API) công bố có tiêu đề “Kiểm tra bình chịu áp lực”

Nguồn
inspectioneering.com
API RP 572 – Kiểm tra bình chịu áp lực – Kiểm tra
api.org
API công bố phiên bản thứ 5 của RP 572 về bình áp lực …
Thực hành được đề xuất API 572, Phiên bản thứ 5
API 572 2001 Kiểm tra bình chịu áp lực PDF – Scribd

Tiêu chuẩn API 572, có tiêu đề chính thức là “Thực hành kiểm tra bình chịu áp lực”, là Thực hành được khuyến nghị (RP) do Viện Dầu khí Hoa Kỳ (API) công bố, cung cấp hướng dẫn toàn diện về việc kiểm tra bình chịu áp lực, bao gồm cả những bình có áp suất thiết kế dưới 15 psig. Nó bổ sung API 510, xác định các yêu cầu đối với kiểm tra bình áp lực, bằng cách cung cấp kiến thức thực tế và thực hành kiểm tra chi tiết cho các thanh tra bình áp lực125.

Các khía cạnh chính của API RP 572:

  • Phạm vi và nội dung: Nó bao gồm các phương pháp kiểm tra, lý do kiểm tra, nguyên nhân hư hỏng, tần suất kiểm tra, phương pháp sửa chữa và lưu trữ hồ sơ liên quan đến bình chịu áp lực được sử dụng trong các nhà máy lọc dầu và nhà máy hóa chất. RP giải quyết các loại bình khác nhau như trống, bộ trao đổi nhiệt, cột, lò phản ứng, bộ làm mát không khí và quả cầu15.

  • Trọng tâm an toàn: Ấn bản thứ 5, được xuất bản vào tháng 11 năm 2023, nhấn mạnh sự an toàn cho nhân viên làm việc xung quanh bình chịu áp lực và cho chính các thanh tra, nhằm giảm rủi ro hỏng hóc và cải thiện an toàn kiểm tra2.

  • Lập kế hoạch kiểm tra: Nó bao gồm hướng dẫn về việc phát triển các kế hoạch thanh tra, xem xét và cập nhật chúng, và áp dụng các chiến lược kiểm tra dựa trên rủi ro. Nó cũng trình bày chi tiết các phương pháp kiểm tra như đo độ dày, kiểm tra bên trong và bên ngoài, và các kỹ thuật đặc biệt để phát hiện hư hỏng cơ học và thay đổi luyện kim12.

  • Tích hợp với các tiêu chuẩn khác: API RP 572 được thiết kế để hoạt động cùng với các tiêu chuẩn API khác như API 510 (Mã kiểm tra bình chịu áp lực), API RP 571 (Cơ chế hư hỏng) và API RP 574 (Thực hành kiểm tra các thành phần hệ thống đường ống). Làm quen với Mã nồi hơi và bình áp lực ASME, Phần VIII, cũng có lợi1.

  • Tư liệu: RP cung cấp các định dạng và ví dụ cho hồ sơ và báo cáo kiểm tra, rất quan trọng để duy trì tính toàn vẹn và tuân thủ của bình chịu áp lực1.

Phiên bản và cập nhật:

  • API RP 572 ban đầu được xuất bản vào năm 1992, với phiên bản thứ 5 mới nhất được phát hành vào năm 2023. Phiên bản mới nhất cập nhật nội dung cơ bản, kết hợp các công nghệ mới, sửa đổi các phụ lục cho các bộ trao đổi và tháp và phù hợp hơn với các tiêu chuẩn API khác12.

Sử dụng:

  • API RP 572 đóng vai trò là tài liệu tham khảo cơ bản cho Chương trình Chứng nhận Cá nhân (ICP) 510 của API và Chương trình Đánh giá Địa điểm An toàn Quy trình (PSSAP),® đặc biệt là trong giao thức Tính toàn vẹn Cơ học, là một phần quan trọng của quản lý an toàn quy trình trong ngành2.

Tóm lại, API RP 572 là một thực hành được khuyến nghị chi tiết hướng dẫn việc kiểm tra bình chịu áp lực để đảm bảo hoạt động an toàn và đáng tin cậy, bổ sung cho các tiêu chuẩn API khác và tập trung vào các kỹ thuật kiểm tra thực tế, tài liệu an toàn và bảo trì125.

 

Giới thiệu API 572: là tiêu chuẩn do Viện Dầu khí Hoa Kỳ (API) công bố có tiêu đề “Kiểm định Bình chịu áp suất”.
Tiêu chuẩn này cung cấp các hướng dẫn về việc kiểm định bình chịu áp suất được sử dụng trong ngành dầu khí và hóa chất để đảm bảo hoạt động an toàn và đáng tin cậy của chúng.

Các khía cạnh Keychính của API 572:
1. Phạm vi
– Bao gồm việc kiểm định bình chịu áp suất, bao gồm cả bồn chứa, bộ trao đổi nhiệt và các thiết bị khác được thiết kế để hoạt động dưới áp suất.
– Áp dụng cho cả bình mới và bình hiện có.

2. Loại và tần suất kiểm định
– Kiểm định ban đầu: Trước khi đưa bình mới vào sử dụng.
– Kiểm tra định kỳ/thường xuyên: Kiểm tra theo lịch trình trong quá trình vận hành.
– Kiểm tra bên trong, bên ngoài và trên luồng.
– Kiểm tra dựa trên rủi ro (RBI): Ưu tiên kiểm tra dựa trên đánh giá rủi ro.

3. Cơ chế hư hỏng chung
– Ăn mòn (chung, rỗ, nứt ăn mòn ứng suất)
– Xói mòn
– Nứt do mỏi
– Hư hỏng do hydro (phồng rộp, HIC, SSC)
– Biến dạng (trong các dịch vụ nhiệt độ cao)

4. Phương pháp kiểm tra
– Kiểm tra bằng mắt (VT)
– Kiểm tra siêu âm (UT)
– Kiểm tra chụp X quang (RT)
– Kiểm tra hạt từ (MT)
– Kiểm tra chất lỏng thẩm thấu (PT)
– Đo độ dày

5. Sửa chữa & Thay đổi
– Hướng dẫn về các phương pháp sửa chữa được chấp nhận (hàn, vá, đánh giá lại).
– Yêu cầu về tài liệu cho các sửa đổi.

6. Lưu giữ hồ sơ & Báo cáo
– Duy trì lịch sử kiểm tra, phát hiện và khuyến nghị.
– Tuân thủ các yêu cầu theo quy định (ví dụ: OSHA, ASME).

Relation-Liên quan đến các Tiêu chuẩn API khác:
– API 510 – Bộ luật Kiểm tra Bình chịu áp suất (yêu cầu chứng nhận chi tiết hơn).
– API 653 – Kiểm tra, Sửa chữa, Thay đổi và Xây dựng lại Bồn chứa.
– API 570 – Bộ luật Kiểm tra Đường ống.

Who-Ai sử dụng API 572
– Thanh tra viên, kỹ sư và nhân viên bảo trì tại các nhà máy lọc dầu, nhà máy hóa dầu và cơ sở xử lý khí.
– Các chuyên gia đảm bảo/kiểm soát chất lượng đảm bảo tuân thủ các tiêu chuẩn an toàn.

#API 572 #ASME #ANSI #INSPECTION #TECHNIQUES #PETROCHEMICAL #OIL #GAS #PIPING #INSPECTION #TECHNIQUES #CODE #CORROSION #DAMAGE MECHANISMS #VESSEL #API 510 #API 571

API 572, ASME, ANSI, KIỂM TRA, KỸ THUẬT, HÓA DẦU, DẦU KHÍ, ỐNG, KIỂM TRA, KỸ THUẬT, MÃ, ĂN MÒN, CƠ CHẾ HƯ HỎNG, Bồn, API 510, API 571
(St.)
Kỹ thuật

ASME B31.3 – Bản cập nhật năm 2024: Chấp nhận sự hợp nhất không hoàn toàn trong mối hàn chu vi

57

ASME B31.3 – Bản cập nhật năm 2024: Chấp nhận sự hợp nhất không hoàn toàn trong mối hàn chu vi

Tổng quan

Phiên bản ASME B31.3 – 2024 giới thiệu các cập nhật quan trọng liên quan đến các tiêu chí chấp nhận đối với nhiệt hạch không hoàn chỉnh trong mối hàn chu vi. Sự thay đổi này phản ánh các thực tiễn ngành đang phát triển, công nghệ kiểm tra hàn được cải tiến và hiểu biết nhiều sắc thái hơn về tính toàn vẹn và an toàn của mối hàn.

Những điểm chính của bản cập nhật năm 2024

1. Chấp nhận hàn không hoàn chỉnh

  • Các phiên bản trước: Theo truyền thống, ASME B31.3 duy trì lập trường rất thận trọng đối với các khuyết tật nhiệt hạch không hoàn chỉnh trong mối hàn chu vi, thường yêu cầu nhiệt hạch hoàn toàn để được coi là có thể chấp nhận được.

  • Bản sửa đổi năm 2024: Bộ luật mới cho phép chấp nhận hạn chế các khiếm khuyết nhiệt hạch không hoàn chỉnh trong các điều kiện cụ thể, nhận ra rằng một số nhiệt hạch nhỏ không hoàn chỉnh có thể không ảnh hưởng đến tính toàn vẹn tổng thể khi được đánh giá đúng cách.

2. Điều kiện chấp nhận

  • Kích thước và vị trí: Nhiệt hạch không hoàn chỉnh phải nằm trong giới hạn kích thước xác định và nằm ở những khu vực ít quan trọng hơn đối với tính toàn vẹn cấu trúc của đường ống.

  • Khám không phá hủy (NDE): Các phương pháp NDE nâng cao (chẳng hạn như thử nghiệm siêu âm tiên tiến) phải được sử dụng để mô tả chính xác khuyết tật.

  • Đánh giá kỹ thuật: Cần có một đánh giá kỹ thuật kỹ lưỡng, bao gồm phân tích ứng suất và đánh giá cơ học đứt gãy, để biện minh cho việc chấp nhận.

  • Quy trình hàn và kiểm soát chất lượng: Quy trình hàn phải chứng minh chất lượng nhất quán và các hành động khắc phục phải được ghi lại nếu phát hiện nhiệt hạch không hoàn toàn.

3. Tác động đến kiểm tra và đảm bảo chất lượng

  • Bản cập nhật khuyến khích sử dụng các kỹ thuật kiểm tra phức tạp hơn để phân biệt giữa nhiệt hạch không hoàn chỉnh tới hạn và không tới hạn.

  • Nó nhấn mạnh việc kiểm tra dựa trên rủi ro và đánh giá tính phù hợp với dịch vụ hơn là từ chối toàn bộ tất cả các sự kiện hợp nhất không hoàn chỉnh.

4. Lý do đằng sau sự thay đổi

  • Những tiến bộ trong công nghệ hàn và các công cụ kiểm tra đã cải thiện khả năng phát hiện và đánh giá các khuyết tật mối hàn.

  • Nghiên cứu cho thấy rằng các khuyết tật nhiệt hạch không hoàn chỉnh nhỏ, được xác định rõ ràng có thể không ảnh hưởng đáng kể đến hiệu suất của ranh giới áp suất.

  • Thay đổi này nhằm giảm chi phí sửa chữa không cần thiết và thời gian ngừng hoạt động trong khi vẫn duy trì sự an toàn.

Ý nghĩa thực tiễn đối với ngành công nghiệp

  • Nhà thầu hàn: Cần cập nhật quy trình hàn và đào tạo để phù hợp với tiêu chí nghiệm thu mới.

  • Thanh tra và kỹ sư: Phải quen thuộc với các tiêu chí sửa đổi và có khả năng thực hiện đánh giá chi tiết.

  • Quản lý dự án: Có thể mong đợi tiết kiệm chi phí tiềm năng và cải thiện lịch trình do ít sửa chữa mối hàn hơn.

  • An toàn và tuân thủ: Phải đảm bảo rằng tất cả các quyết định chấp nhận đều được ghi lại đầy đủ và hợp lý theo quy tắc mới.

Tóm tắt

Bản cập nhật ASME B31.3 – 2024 về nhiệt hạch không hoàn toàn trong mối hàn chu vi đánh dấu sự thay đổi tiến bộ theo hướng tiếp cận linh hoạt hơn, dựa trên bằng chứng. Bằng cách cho phép chấp nhận hạn chế các khuyết tật nhiệt hạch không hoàn chỉnh trong các điều kiện được kiểm soát, mã cân bằng độ an toàn, độ tin cậy và hiệu quả kinh tế trong hệ thống đường ống quy trình.

 

🔧 ASME B31.3 – Bản cập nhật năm 2024: Chấp nhận sự hợp nhất không hoàn toàn trong mối hàn chu vi 🔍

Trong phiên bản ASME B31.3 năm 2024, một bản cập nhật quan trọng đã được thực hiện liên quan đến sự hợp nhất không hoàn toàn (LOF) trong mối hàn chu vi.

📌 Trước đây, bất kỳ dấu hiệu nào về sự hợp nhất không hoàn toàn đều được coi là không thể chấp nhận được.

📌 Bây giờ, cả Dịch vụ chất lỏng thông thường và Dịch vụ loại M đều cho phép chỉ định sự hợp nhất không hoàn toàn lên đến 38 mm trong mối hàn chu vi, trong các điều kiện cụ thể, như đã nêu trong Bảng 341.3.2.1 và các ghi chú tương ứng.

📘 🔄 Phiên bản năm 2024 đã được xuất bản vào tháng 12 năm 2024 và sẽ chính thức có hiệu lực vào tháng 6 năm 2025.
🧠 Đừng quên cập nhật các quy trình và tiêu chí chấp nhận của bạn cho phù hợp!

#ASME #B31.3 #WeldingInspection #GirthWeld #IncompleteFusion #QCEngineer #NDT #WeldingStandards #Petrochemical #CodeUpdate #PipingEngineering #WeldingQuality

ASME, B31.3, Kiểm tra hàn, Lớp hàn chu vi, Liên kết không hoàn chỉnh, Kỹ sư QC, NDT, Tiêu chuẩn hàn, Hóa dầu, Cập nhật mã, Kỹ thuật đường ống, Chất lượng hàn
(St.)
Kỹ thuật

Yêu cầu PWHT

22

Yêu cầu PWHT

Nguồn
Dịch vụ kỹ thuật | Giải pháp Kỹ thuật Pune | Đo lường ý tưởng
Yêu cầu xử lý nhiệt sau hàn (PWHT) theo ASME …
Linkedin
Yêu cầu xử lý nhiệt sau mối hàn (PWHT) đối với …
TETRA-ENG
Xử lý nhiệt sau hàn (PWHT) – Tetra Engineering
Miễn mã xử lý nhiệt sau hàn – Pt 1 – TWI

Các yêu cầu về xử lý nhiệt sau hàn (PWHT) chủ yếu được điều chỉnh bởi các quy tắc như ASME Phần VIII Phân khu 1 và ASME B31.3, quy định khi nào PWHT là bắt buộc và cách thực hiện đối với vật liệu hàn, đặc biệt là thép cacbon và hợp kim thấp.

Khi nào cần PWHT?

Theo ASME Phần VIII Phân khu 1, PWHT là bắt buộc trong một số điều kiện, đặc biệt là đối với thép cacbon và thép hợp kim thấp (P số 1, Gr. 1,2,3,4):

  • Đối với mối hàn rãnh hoặc mối hàn phi lê không quá 1/2 inch (13 mm), gắn các kết nối vòi phun có đường kính trong không lớn hơn 2 inch (50 mm), với điều kiện áp dụng nhiệt độ sơ bộ ít nhất 200 ° F (95 ° C).

  • Đối với mối hàn rãnh hoặc phi lê gắn ống vào tấm ống khi đường kính ống không vượt quá 2 inch (50 mm), làm nóng trước nếu hàm lượng carbon vượt quá 0.22%.

  • Đối với mối hàn gắn các bộ phận không áp lực vào các bộ phận áp suất dày hơn 1 1/4 inch (32 mm), có tính năng làm nóng trước.

  • Đối với đinh tán được hàn vào các bộ phận áp suất dày hơn 1 1/4 inch (32 mm), có làm nóng trước.

  • Đối với lớp phủ kim loại hàn chống ăn mòn hoặc mối hàn gắn lớp lót chống ăn mòn trên các bộ phận áp suất dày hơn 1 1/4 inch (32 mm), với tính năng làm nóng trước trong lớp đầu tiên1.

Các điều kiện khác bao gồm:

  • Khi độ dày danh nghĩa của vật liệu vượt quá các giá trị quy định (ví dụ: 38 mm đối với vật liệu P số 1).

  • Khi các điều kiện dịch vụ liên quan đến dịch vụ gây chết người, đốt trực tiếp hoặc nồi hơi không nung.

  • Khi nhiệt độ kim loại thiết kế tối thiểu (MDMT) dưới -55 ° F, PWHT có thể được yêu cầu5.

PWHT nên được thực hiện như thế nào?

Các yêu cầu chính để thực hiện PWHT bao gồm:

  • Làm nóng vật liệu hàn đến nhiệt độ thấp hơn nhiệt độ biến đổi tới hạn thấp hơn và giữ nó trong một thời gian xác định dựa trên loại vật liệu và độ dày.

  • Tốc độ gia nhiệt không được vượt quá 400 ° F / giờ trên mỗi inch độ dày và tốc độ làm mát không được vượt quá 500 ° F / giờ trên mỗi inch độ dày.

  • Nhiệt độ tải tối đa cho lò PWHT không được vượt quá 800 ° F.

  • Độ đồng đều nhiệt độ trong quá trình ngâm phải được duy trì với chênh lệch tối đa là 150 ° F giữa các phần nóng nhất và lạnh nhất.

  • Dải được làm nóng phải kéo dài ít nhất bốn lần độ dày của ống hoặc 2 inch ở hai bên của mối hàn.

  • Phần bên ngoài dải được nung nóng nên được cách nhiệt để tránh độ dốc nhiệt độ có hại, với nhiệt độ bề mặt không vượt quá 400 ° C.

  • Không nên hàn sau PWHT.

  • Cần sử dụng máy ghi nhiệt độ tự động đã hiệu chuẩn để theo dõi chu trình xử lý nhiệt56.

Thời gian và nhiệt độ giữ

ASME B31.3 cung cấp bảng thời gian giữ tối thiểu ở nhiệt độ cho PWHT dựa trên P-No. và độ dày vật liệu. Ví dụ, đối với P-No. 1 vật liệu, phạm vi nhiệt độ giữ thường là 595 đến 650 ° C (1100 đến 1200 ° F), với thời gian giữ là 1 giờ trên 25 mm (1 giờ trên inch) độ dày đối với vật liệu dày đến 50 mm và thời gian dài hơn đối với vật liệu dày hơn7.

Tóm tắt

  • PWHT được yêu cầu chủ yếu đối với thép cacbon và hợp kim thấp khi độ dày mối hàn, điều kiện sử dụng hoặc thành phần vật liệu vượt quá giới hạn nhất định.

  • Làm nóng sơ bộ trước khi hàn và sưởi ấm / làm mát có kiểm soát trong PWHT là rất quan trọng.

  • Nhiệt độ và chu kỳ thời gian cụ thể được quy định bởi các mã như ASME Phần VIII Div. 1 và B31.3.

  • Thiết bị đo đạc và cách nhiệt thích hợp là cần thiết để đảm bảo xử lý đồng đều và ngăn ngừa hư hỏng.

Những yêu cầu này đảm bảo giảm ứng suất dư, ngăn ngừa các cấu trúc vi mô giòn và tính toàn vẹn tổng thể của thiết bị áp lực hàn1567.

 

Govind Tiwari,PhD

Yêu cầu về PWHT 🔥

PWHT là phương pháp xử lý nhiệt có kiểm soát được áp dụng sau khi hàn để giảm ứng suất dư và tinh chỉnh mối hàn và cấu trúc vi mô của kim loại cơ bản. Nó ngăn ngừa các vấn đề như gãy giòn, HIC và nứt do ăn mòn ứng suất—đặc biệt là trong dịch vụ chua có tiếp xúc với H₂S.

📣 PWHT làm giảm những rủi ro này bằng cách:

🔹Cho phép khuếch tán hydro bị giữ lại (nếu không có thể gây ra nứt chậm)
🔹Làm mềm các vùng bị ảnh hưởng bởi nhiệt độ cứng (HAZ)
🔹Giảm nồng độ ứng suất
🔹Khôi phục độ dẻo và độ dai
🔹Cải thiện khả năng chống biến dạng cho các dịch vụ nhiệt độ cao

Khi nào cần sử dụng PWHT?

✅ Dựa trên:
– Loại vật liệu: CS, Cr-Mo, thép hợp kim thấp, thép không gỉ martensitic
– Độ dày mối hàn: Ví dụ, ASME B31.3 yêu cầu PWHT cho mối hàn CS >19 mm
– Điều kiện dịch vụ: Dịch vụ chua (H₂S), tải tuần hoàn, áp suất cao/nhiệt độ cao
– Thông số kỹ thuật của khách hàng: Shell DEP, ADNOC, ARAMCO, SABIC
– Mã áp dụng: ASME Sec VIII, B31.3, B31.1, B31.4, API 582, NACE MR0175

🚀 Quy trình PWHT từng bước:

→ Xác định các thông số trong WPS/PQR, chỉ định vị trí cặp nhiệt điện
Làm nóng trước (nếu có)
→ Ngăn ngừa sốc nhiệt trong vật liệu có thể làm cứng
Làm nóng có kiểm soát
→ Thông thường ≤55°C/giờ đối với CS để tránh nứt
Ngâm
→ Giữ ở nhiệt độ mục tiêu (ví dụ: 620–740°C) trong 1 giờ/inch độ dày
Làm mát có kiểm soát
→ Làm mát chậm đến 300°C; sau đó làm mát bằng không khí
Kiểm tra & Tài liệu
→ Biểu đồ đánh giá QA/QC; dữ liệu có trong MDR/TOP

⚠️ Thách thức chung về PWHT:

🔸 Vị trí cặp nhiệt điện không chính xác ảnh hưởng đến độ chính xác của quá trình ngâm
🔸 Hiệu chuẩn thiết bị kém → không tuân thủ WPS
🔸 Nhiệt độ quá cao hoặc quá thấp dẫn đến suy giảm tính chất cơ học
🔸 Hiểu sai ngưỡng độ dày của mã
🔸 Gia nhiệt không đồng đều trong các mối hàn lớn hoặc không giống nhau
🔸 Khoảng cách tài liệu trong quá trình kiểm toán hoặc đánh giá MDR của khách hàng

🎯 Những điểm chính cần ghi nhớ:

✅ PWHT không phải là một kích thước phù hợp với tất cả – hãy điều chỉnh theo vật liệu, độ dày và dịch vụ
✅ WPS/PQR phải phù hợp với các thông số PWHT cụ thể của công việc
✅ Khả năng truy xuất nguồn gốc và hiệu chuẩn phù hợp là không thể thương lượng
✅ Việc tuân thủ NACE MR0175 đòi hỏi phải kiểm soát độ cứng—không chỉ nhiệt độ
✅ Các tiêu chuẩn cụ thể của khách hàng (Shell, ADNOC, v.v.) có thể áp dụng yêu cầu nghiêm ngặt hơn

Govind Tiwari,PhD.

qms, chất lượng, iso9001, qa, qc, PWHT, Kỹ thuật hàn, QAQC, Chế tạo, Luyện kim, ASME, API, NACE, Xử lý nhiệt, Dầu khí, Nhà máy lọc dầu, Đường ống quy trình, Kỹ thuật xuất sắc, Dịch vụ chu đáo, WPS, PQR, Cải tiến liên tục, Lãnh đạo về chất lượng

(St.)